
Visual Cafe
User’s Guide

TM

Symantec Visual CafeTM User’s Guide
The software described in this book is furnished under a license agreement and may be used only in
accordance with the terms of the agreement.

Copyright Notice
Copyright © 1997-1998 Symantec Corporation.

All Rights Reserved.

Released:11/98 for Visual Cafe 3.0

This document may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced
to any electronic medium or machine-readable form without prior consent in writing from Symantec
Corporation, 10201 Torre Avenue, Cupertino, CA 95014.

ALL EXAMPLES WITH NAMES, COMPANY NAMES, OR COMPANIES THAT APPEAR IN THIS MANUAL
ARE IMAGINARY AND DO NOT REFER TO, OR PORTRAY, IN NAME OR SUBSTANCE, ANY ACTUAL
NAMES, COMPANIES, ENTITIES, OR INSTITUTIONS. ANY RESEMBLANCE TO ANY REAL PERSON,
COMPANY, ENTITY, OR INSTITUTION IS PURELY COINCIDENTAL.

Every effort has been made to ensure the accuracy of this manual. However, Symantec makes no
warranties with respect to this documentation and disclaims any implied warranties of merchantability
and fitness for a particular purpose. Symantec shall not be liable for any errors or for incidental or
consequential damages in connection with the furnishing, performance, or use of this manual or the
examples herein. The information in this document is subject to change without notice.

Trademarks
Symantec Visual Cafe, Symantec, and the Symantec logo are U.S. registered trademarks of Symantec
Corporation.

Other product names mentioned in this manual may be trademarks or registered trademarks of their
respective companies and are the sole property of their respective manufacturers.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

The software which accompanies this license (the "Software") is the property of Symantec or its licensors and is protected by copy-
right law. While Symantec continues to own the Software, you will have certain rights to use the Software after your acceptance of
this license. Except as may be modified by a license addendum which accompanies this license, your rights and obligations with
respect to the use of this Software are as follows:

• You may:

(i) use one copy of the Software on a single computer;

(ii) make one copy of the Software for archival purposes, or copy the software onto the hard disk of your computer and retain
the original for archival purposes;

(iii) use the Software on a network, provided that you have a licensed copy of the Software for each computer that can access
the Software over that network;

(iv) after written notice to Symantec, transfer the Software on a permanent basis to another person or entity, provided that
you retain no copies of the Software and the transferee agrees to the terms of this agreement; and

(v) if a single person uses the computer on which the Software is installed at least 80% of the time, then after returning the
completed product registration card which accompanies the Software, that person may also use the Software on a single home com-
puter.

• You may not:

(i) copy the documentation which accompanies the Software;

(ii) sublicense, rent or lease any portion of the Software;

(iii) reverse engineer, decompile, disassemble, modify, translate, make any attempt to discover the source code of the Soft-
ware, or create derivative works from the Software; or

(iv) use a previous version or copy of the Software after you have received a disk replacement set or an upgraded version as
a replacement of the prior version, unless you donate a previous version of an upgraded version to a charity of your choice, and
such charity agrees in writing that it will be the sole end user of the product, and that it will abide by the terms of this agreement.
Unless you so donate a previous version of an upgraded version, upon upgrading the Software, all copies of the prior version must
be destroyed.

• Sixty Day Money Back Guarantee:

If you are the original licensee of this copy of the Software and are dissatisfied with it for any reason, you may return the complete
product, together with your receipt, to Symantec or an authorized dealer, postage prepaid, for a full refund at any time during the
sixty day period following the delivery to you of the Software.

• Limited Warranty:

Symantec warrants that the media on which the Software is distributed will be free from defects for a period of sixty (60) days from
the date of delivery of the Software to you. Your sole remedy in the event of a breach of this warranty will be that Symantec will,
at its option, replace any defective media returned to Symantec within the warranty period or refund the money you paid for the
Software. Symantec does not warrant that the Software will meet your requirements or that operation of the Software will be unin-
terrupted or that the Software will be error-free.

THE ABOVE WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUD-
ING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHER RIGHTS, WHICH VARY FROM STATE TO
STATE.

• Disclaimer of Damages:

REGARDLESS OF WHETHER ANY REMEDY SET FORTH HEREIN FAILS OF ITS ESSENTIAL PURPOSE, IN NO EVENT WILL SYMAN-
TEC BE LIABLE TO YOU FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT OR SIMILAR DAMAGES, INCLUDING ANY LOST PROF-
ITS OR LOST DATA ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE EVEN IF SYMANTEC HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

SOME STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAM-
AGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

IN NO CASE SHALL SYMANTEC’S LIABILITY EXCEED THE PURCHASE PRICE FOR THE SOFTWARE. The disclaimers and limitations
set forth above will apply regardless of whether you accept the Software.

• U.S. Government Restricted Rights:

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subpara-
graph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c) (1) and
(2) of the Commercial Computer Software-Restricted Rights clause at 48 CFR 52.227-19, as applicable, Symantec Corporation, 10201
Torre Avenue, Cupertino, CA 95014.

SYMANTEC LICENSE AND WARRANTY

Language Addendum
If the Software is a Symantec language product, then you have a royalty-free right to include object code
derived from the Symantec component (java source or class) files in programs that you develop using
the Software and you also have the right to use, distribute, and license such programs to third parties
without payment of any further license fees, so long as a copyright notice sufficient to protect your
copyright in the program is included in the graphic display of your program and on the labels affixed to
the media on which your program is distributed. You have the right to make changes to the Symantec
components, but only to the extent necessary to correct bugs in such components, and not for any other
purpose. You also have a royalty-free right to include unmodified (except as stated in the previous
sentence) Symantec component files required by your programs, but not as components of any
development environment or component library you are distributing. The Symantec component files that
may be redistributed are in the following folder in the Visual Cafe directory - VisualCafe\redist. The Java
Virtual Machine (VM) or Just In Time (JIT) compiler may not be redistributed.

Acknowledgements
Documentation team: Cheryl Chambers, Orlando Cordero, Jim Douglas, Erfert Fenton, Guy Haas,
Kimberly Haeger, Lauren Katzive, Landon Ott, Cheryl Potter, and Jonathan Simonoff.

Special thanks to: David Allcott, Eric Anderson, Andrei Arefiev, John Bealkowski, Erik Bruchez, Tim
Bumgarner, David Bustin, Carlos Chang, Craig Conner, John Dixon, Dennis Dunham, David Ewing, Bob
Foster, Mac Foster, Steve Frehe, Tatiana Golovina, Tim Hanna, Naoki Hamajimi, Ling Hao, Michael
Hopkins, Warren Horowitz, Dawn Hutton, Lubomir Litchev, Tim Lopez, Rod Magnuson, Andrew
McFarland, Terry Okamoto, Dan Small, D’Arcy Smith, Glenn Taylor, Craig Yara, and the rest of the Visual
Cafe 3.0 team.

Extra special thanks go to: Erfert the Wonder Editor and Horse Wrangler.

Heartfelt thanks goes to C. Rand McKinney, Mom, and Dad.

C O N T E N T S
Section I The Essentials

Chapter 1 Welcome to Visual Cafe

Visual Cafe features ...1-2

What’s new in Visual Cafe version 3.0 ...1-3
New or improved features in all editions .. 1-3

JDK 1.1.7a and 1.2 support .. 1-4
Improved Just-in-Time compiler (JIT) .. 1-4
Swing support .. 1-4
The Swing Menu Designer .. 1-4
Improved interaction features ... 1-5
Javadoc support ... 1-5
Rapid JavaBeans development ... 1-5
Improved AutoJAR tool and JAR Viewer .. 1-5
One-step deployment ... 1-6
Code Helper ... 1-6
Syntax Checker .. 1-6
Improved GridBagLayout support ... 1-6
New Java macro system .. 1-6

New features in the Professional and Database Editions 1-7
Localization tool .. 1-7
Version control integration .. 1-7
Servlet support ... 1-7
Improved customizable user interface ... 1-7

New features in the Database edition .. 1-8

Version compatibility ...1-9
Menu rearrangement ... 1-9
Updating Visual Cafe ... 1-11

Visual Cafe documentation ...1-11
Visual Cafe Getting Started ... 1-12
Visual Cafe Sourcebook .. 1-12
Online Help .. 1-12
 v

ReadMe file ... 1-13
User’s Guide ... 1-13
Portable Document Format .. 1-13

How much programming do I need to know?1-14

Conventions used in this manual ..1-15

What’s next? ...1-15

Chapter 2 Developing in Visual Cafe

The Visual Cafe environment ..2-2
Windows ... 2-2
Toolbars .. 2-3
Editors ... 2-4
Wizards ... 2-4
How Visual Cafe keeps work synchronized ... 2-5
Understanding Visual Cafe components .. 2-5

AWT Components .. 2-6
Swing components ... 2-6
JavaBeans components .. 2-7

Forms hold your Java program together .. 2-7
Projects keep your work together .. 2-8
Using workspaces to customize your work environment 2-8

About applets, applications, servlets, and libraries2-9
Applets .. 2-10

Browser versions needed to run Visual Cafe 3.0 applets 2-11
Advantages of applets .. 2-11
Limitations of applets .. 2-12

Applications ... 2-12
Libraries .. 2-13
Servlets ... 2-14

Debugging with Visual Cafe ...2-14

Compiler choices ..2-15
Symantec’s Just-in-Time compiler ... 2-15
Sun Microsystems’ Javac Compiler and JDK .. 2-15
vi

Overview of creating a Java program ..2-16
Overview of creating an applet .. 2-16
Overview of creating an application ... 2-17

Chapter 3 Working with Projects

About projects ..3-1

About the Project window ..3-2
About the Project window’s views ... 3-4

The Objects view .. 3-4
The Files view ... 3-5
The Packages view ... 3-6

Changing the Project window’s tab display .. 3-8
Dragging and dropping into the Project window ... 3-9
Opening editors from the Project window .. 3-10

About the contents of a project ..3-11
Source files ... 3-12
Additional projects ... 3-12
Documentation files ... 3-13

Organizing files and folders ...3-13
About the system path .. 3-14
About the project path ... 3-15

About multiple projects and subprojects ..3-15
About multiple projects .. 3-15

Viewing active projects ... 3-16
About subprojects ... 3-16
Using subprojects .. 3-17

About workspaces ..3-18
About dockable windows in a workspace ... 3-19

Using workspaces ..3-19
Working with the MDI window system ... 3-19
Modifying workspaces ... 3-23

Controlling toolbar position and visibility ... 3-24

About project templates ...3-25
 vii

Using project templates ..3-26
Setting a new default template .. 3-28
Creating a project template ... 3-28
Deleting a project template .. 3-29
Creating a servlet .. 3-30

Specifying execution settings for a servlet .. 3-33

Working with projects ..3-35
Creating a new project .. 3-36
Opening an existing project ... 3-37
Using older projects and files .. 3-37

Migrating a project from earlier versions of Visual Cafe 3-38
Migrating Java source files from JDK 1.0 to JDK 1.1 3-38

Saving a project ... 3-39
Renaming a project .. 3-40
Copying a project .. 3-40
Deleting a project .. 3-41
Opening items in a project ... 3-41
Closing a project ... 3-42

About files in a project ...3-42

Using files in a project ..3-42
Adding a new file to a project .. 3-43
Adding an existing file to a project ... 3-44
Deleting a file from a project .. 3-46
Copying a file in a project .. 3-47
Sharing files among projects .. 3-48

Working with components in a project ...3-48
Viewing the components and HTML files in a project 3-48
Adding a component to a project ... 3-49

About HTML files in Visual Cafe ..3-50
How HTML and Java work together: the applet tag 3-51
Adding an applet to an HTML page .. 3-52

Using HTML files ..3-53
Viewing and editing HTML files .. 3-53
Passing parameters to applets from an HTML file .. 3-54
viii

Customizing a project ...3-55
About project options .. 3-55
Setting project options .. 3-58

Setting the program type .. 3-58
Specifying class-file search paths for a project 3-60
Specifying source-file search paths for a project 3-62

Customizing the Visual Cafe environment3-64
About environment options .. 3-64
Setting environment options .. 3-67

Defining the Visual Cafe startup mode .. 3-67
Setting the scope of the Undo command .. 3-69
Defining the Help file set ... 3-69
Specifying source-file search paths for Visual Cafe 3-69
Inheriting the class path from the Windows environment 3-71
Setting the class path for a Web browser ... 3-71
Setting environment variables in the sc.ini file ... 3-72
Mapping Visual Cafe commands to key sequences 3-73
Customizing the display font and color .. 3-81
Setting backup and save options .. 3-83

Chapter 4 Working with Source Code

About classes, members, and the Class Browser4-1
About the Classes pane .. 4-3
About the Members pane .. 4-4
About the Source pane .. 4-5

Working with classes ..4-6
Configuring the Class Browser .. 4-6

Configuring the Class Browser and Hierarchy Editor 4-9
Opening a Class Browser window ... 4-11
Using the Classes pane ... 4-12
Using the Members pane .. 4-13
Using the Source pane .. 4-14
Using the Insert Class Wizard ... 4-15
Adding a class ... 4-21
Editing a class .. 4-22
Copying or moving a class ... 4-23
 ix

Renaming a class .. 4-23
Viewing and editing the source code for a class .. 4-24
Deleting a class ... 4-24
Finding a class or class definition ... 4-25

Working with members ...4-27
Finding a member .. 4-28
Adding a member .. 4-29
Copying or moving a member .. 4-31
Deleting a member .. 4-31
Renaming a member .. 4-32
Viewing a member’s source code .. 4-33
Viewing a member’s attributes .. 4-33

About the Hierarchy Editor ...4-35

Using the Hierarchy Editor ...4-36
Viewing imports ... 4-36
Locating a class in the Hierarchy Editor ... 4-37
Changing a class inheritance ... 4-37
Changing class attributes .. 4-38

About the Source window ..4-38

Using the Source window ...4-41
Editing a source file ... 4-41
Showing horizontal scroll bars ... 4-42
Typing in the Source window ... 4-43

Toggling typing modes .. 4-43
Controlling the cursor style ... 4-43
Getting help on a Java keyword or method ... 4-44
Changing code spacing and text capitalization .. 4-44

Enabling and disabling RAD and automatic code generation 4-45
Printing a source code file ... 4-47
Adding custom code to a source file .. 4-48

Guidelines and warnings ... 4-48
Using the Code Helper .. 4-49
Using the Syntax Checker ... 4-51
Correcting syntax errors .. 4-52
Setting text formatting for a single file ... 4-53
x

Setting text formatting for the Visual Cafe environment 4-54
Setting format options for files with a certain extension 4-55
Modifying extension file types for formatting ... 4-58
Specifying custom keyword formatting ... 4-58

About Javadoc ...4-59
About Javadoc output ... 4-60

Using Javadoc ..4-61
Using the Javadoc Editor ... 4-61
Using the Javadoc Viewer ... 4-66
Specifying Javadoc folders .. 4-69
Setting Javadoc options .. 4-70

Searching one or more files ...4-73
Using wildcards in searches .. 4-73
Searching and replacing ... 4-74

Comparing two files .. 4-77
Specifying the search file type and location .. 4-78
Setting advanced search criteria ... 4-79

Jumping to a specific location .. 4-79
Searching for a matching delimiter ... 4-83

Working with imported Java code ..4-84
Importing source code ... 4-84
Importing Visual J++ 1.1 projects .. 4-84

Considerations when importing Visual J++ projects 4-85
Importing a Visual J++ project by way of the .dsw or .dsp file 4-87

Chapter 5 Compiling and Deploying Your Project

Compiling your Java program ..5-1
Running a project ... 5-1

Making applets run in the AppletViewer or a browser 5-2
Specifying an applet’s HTML file ... 5-3

Configuring an application to run in Visual Cafe ... 5-4
About the main class in bytecode and native applications 5-4
Specifying the main class to run for an application 5-5
Specifying arguments for application execution ... 5-6

Compiling from the SJ command line .. 5-7
 xi

Javadoc-related switches ... 5-10
Native Win32 switches ... 5-12
Environment variables ... 5-13
How SJ searches for programs .. 5-13
How SJ searches for imports in SC.INI .. 5-13

Viewing compiler messages .. 5-14
Compiler errors .. 5-15
Using Visual Cafe to locate compiler errors .. 5-16

Specifying whether builds are debug or final .. 5-16
Specifying whether to parse imports ... 5-18
Specifying whether to clear messages before a build 5-19
Specifying the output folder for a project ... 5-19
Using different Java virtual machines in Visual Cafe 5-22
Setting internal VM environment options ... 5-28

Deploying your project ...5-31
Deploying your applet .. 5-32
Deploying your application ... 5-33
Configuring UNIX-based Web servers ... 5-35
Deploying from the command line .. 5-35

Setting command-line archiving options .. 5-37

Setting deployment options ..5-38
Setting deployment options for a project ... 5-39

Setting the archive type, signer tool, and protocol 5-40
Specifying what files to include in your archive or directory 5-44
How Visual Cafe figures out what files your program needs 5-46
Setting archiver options for JAR files .. 5-48
Setting archiver options for CAB files ... 5-50
Setting advanced deployment options for a project 5-51

Setting deployment options for all projects .. 5-52

About JAR files ..5-54
About deployment and JAR files .. 5-55

Using JAR files ...5-55
Adding external files to a JAR .. 5-55
Expanding a JAR file .. 5-56
Viewing a JAR file ... 5-56
xii

Setting compiler options ..5-57
Specifying Java optimizations .. 5-59
Generating debug information .. 5-60
Specifying the Sun Java compiler .. 5-60
Showing compiler warning messages .. 5-61
Showing progress messages ... 5-61
Showing dependencies .. 5-62
Showing all Java messages ... 5-62
Specifying Make settings .. 5-63
Specifying custom compiler flags .. 5-64

Chapter 6 Debugging Your Program

About the Visual Cafe debugger ..6-2

About the debug workspace ...6-3
About the Breakpoints window .. 6-4
About the Call Stack window ... 6-5
About the Messages window .. 6-5
About the Threads window .. 6-6
About the Variables window .. 6-7
About the Watch window ... 6-8
About the Source window ... 6-8
About the Debug toolbar ... 6-9
Keyboard shortcuts ... 6-10

Using the debugger ..6-10
Starting a debugging session ... 6-11

Switching to the Debug workspace when running in the debugger 6-12
Ending a debugging session .. 6-13

Restarting a debugging session .. 6-14
Pausing a program to debug it ... 6-14

Resuming a program ... 6-15
Working with debugger messages ... 6-15

Using Messages window shortcut keys .. 6-16

Working with breakpoints ..6-16
Managing breakpoints ... 6-17
Setting a breakpoint .. 6-18
Setting a breakpoint on a line number .. 6-18
 xiii

Setting a conditional breakpoint ... 6-19
Modifying a conditional breakpoint .. 6-19

Setting a breakpoint at a method ... 6-20
Enabling or disabling a breakpoint .. 6-20

Turning breakpoints on and off in the Breakpoints window 6-20
Turning breakpoints on and off in the Source window 6-21

Clearing a breakpoint ... 6-21
Ignoring all breakpoints .. 6-22

Running to the end of the program .. 6-22
Running to the cursor location .. 6-23

Viewing the source code for a breakpoint .. 6-23
Stepping through code .. 6-24

Stepping into a method ... 6-24
Stepping over a method .. 6-25
Stepping out of a method ... 6-25

Viewing and modifying variables, expressions, and methods6-26
Using the Variables window ... 6-26

Viewing the value of a variable .. 6-27
Viewing type information for a variable .. 6-27
Modifying a variable in the Variables window .. 6-27

Enabling or disabling ValueTips at debug time .. 6-28
Using the Watch window ... 6-28

Adding a variable or expression to watch .. 6-29
Modifying a variable or expression in the Watch window 6-29
Deleting a variable or expression from the Watch window 6-30

Using the Call Stack window ... 6-31
Viewing parameters for a method on the call stack 6-32
Viewing variables for a method on the call stack 6-32
Viewing source code for a method on the call stack 6-32

Debugging threads ...6-33
Using the Threads window ... 6-33

Debugging a single thread .. 6-34
Suspending a thread ... 6-34
Resuming a suspended thread .. 6-35
Suspending other threads ... 6-35
Resuming other suspended threads .. 6-36
Viewing the source code for a selected thread 6-36
xiv

Viewing the active variables in a thread ... 6-36
Viewing the call stack for a thread .. 6-37

Handling exceptions ...6-37
Throwing exceptions .. 6-38
Catching exceptions .. 6-38
Setting exceptions ... 6-38

Using incremental, browser, and remote debugging6-40
Using incremental debugging ... 6-40
Debugging applets in a Web browser .. 6-42

Considerations for browser debugging ... 6-43
Debugging programs on a remote computer .. 6-43

Setting up for remote debugging .. 6-44
Starting remote debugging ... 6-45
Ending remote debugging ... 6-46

Section II Using Components

Chapter 7 Working with Components

About the Java AWT ...7-2

About components ...7-2
About top-level components .. 7-4
About containers ... 7-5
About lightweight and heavyweight components .. 7-6

About the Component Library ..7-7

Using the Component Library ...7-7
Adding components to the Component Library .. 7-8

Creating a component template .. 7-9
Adding custom components .. 7-9
Adding a group to the Component Library ... 7-10
Moving components within the Component Library 7-11
Deleting components from the Component Library .. 7-11
 xv

About the Component Palette ..7-11
Component Palette display options ... 7-13
Customizing the Component Palette ... 7-13

Adding a component or group to the Component Palette 7-16
Moving components on tabs ... 7-18
Deleting a component or group ... 7-18
Renaming tabs .. 7-19

About forms ...7-20
About the Form Designer .. 7-20
Dragging and dropping into the Form Designer .. 7-22

Form Designer shortcuts .. 7-22
Displaying graphics in the Form Designer ... 7-23
Displaying non-visual components in the Form Designer 7-23
Enabling and disabling borders around components 7-24
Using virtual fonts ... 7-24

Overview of designing a GUI ..7-25

Working with forms and components ...7-26
Accessing the Form Designer .. 7-26
Adding a form to a project ... 7-26
Adding components to a form .. 7-27
Copying components ... 7-29
Deleting components .. 7-31
Renaming a component ... 7-32
Overlapping components in applets ... 7-32
Tabbing between fields on a form .. 7-33
Adding a dialog box to a form .. 7-33

Working with component properties ..7-34
About the Property List ... 7-34
Modifying component properties ... 7-36

Arranging components ...7-37
Manipulating the Form Designer grid ... 7-39
Choosing a layout manager ... 7-40
Arranging components without a layout manager ... 7-41
Arranging components in BorderLayout ... 7-42
Arranging components in CardLayout .. 7-42
xvi

Programming the flipping of cards in CardLayout 7-43
Arranging components in FlowLayout .. 7-44
Arranging components in GridLayout ... 7-44
Arranging components in GridBagLayout ... 7-45

Creating AWT-based menus ...7-48
Overview of the menu-design process ... 7-49
Adding a menu bar to an AWT-based frame or dialog box 7-50
Adding menus to an AWT-based menu bar .. 7-51
Adding menu items to AWT-based menus ... 7-51
Adding submenus to menu items ... 7-52
Editing a menu structure .. 7-53
Editing menu bars and menus .. 7-54
Associating command keys and menu items .. 7-54
Binding code to a menu item ... 7-55

Chapter 8 Working with JFC/Swing Components

About Swing ...8-1
Inside Swing components .. 8-3
The structure of a Swing UI ... 8-4
About JComponent features ... 8-5
Mixing Swing and AWT components ... 8-7
About Swing windows and applets .. 8-7
Customizing Swing components .. 8-7

Creating a Swing-based project ...8-8
Overview of creating a Swing-based project .. 8-8
Choosing a look and feel ... 8-9

Changing the look and feel of Swing components 8-10
Finding out which look-and-feels are installed .. 8-11

Specifying tool tips for Swing components .. 8-12
Specifying a border for a Swing component .. 8-12
Choosing a layout manager for a container .. 8-14
Specifying an icon for a Swing component .. 8-15
Specifying a model for a Swing component ... 8-18
Determining component z-order (display order) ... 8-21
Controlling the display of expert and read-only properties 8-21
Working with Swing menus ... 8-22
 xvii

About the Swing Menu Designer .. 8-22
About the Accelerator Editor ... 8-24
About mnemonics ... 8-24

Using Action components in menus and toolbars .. 8-25
Using non-Swing components in a Swing project .. 8-26

Mixing lightweight and heavyweight components 8-26

Chapter 9 Working with Events and Interactions

About events and interactions ..9-1
About interactions in Visual Cafe ... 9-2
Overview of creating interactions .. 9-3

Working with interactions ..9-5
Starting an interaction .. 9-6

Starting an interaction with the Interaction Tool ... 9-6
Starting an interaction with the Interaction Wizard 9-7

Creating an interaction with the Interaction Wizard .. 9-8
Editing an existing interaction ... 9-16
Deleting an interaction ... 9-17
Choosing which interactions are shown ... 9-17

About interaction source code ...9-18
About the Java 1.1 event delegation model ... 9-20
About the Java 1.0 event inheritance model .. 9-21

Working with event handlers ..9-22
Adding an event handler to a component ... 9-22
Editing an event handler ... 9-23
Deleting an event handler .. 9-23
An example of event handler source code ... 9-24

Chapter 10 Working with JavaBeans Components

About JavaBeans and Java ..10-1
JavaBeans terminology ... 10-2
Basic Bean structure ... 10-2
Support of features in the JavaBeans specification 10-2

About JavaBeans services ...10-3

Property management ... 10-4
Accessor and manipulator methods .. 10-4
Indexed properties .. 10-4
Bound and constrained properties .. 10-5

Introspection ... 10-5
Reflection and design patterns .. 10-6
Explicit Bean information ... 10-6
The Introspector ... 10-6

Event handling ... 10-7
Unicast and multicast event sources ... 10-7
Event adapters .. 10-7

Persistence ... 10-8
Bean storage .. 10-8

Application builder support .. 10-8
Property editors and property sheets .. 10-8
Customizers ... 10-9

About building Beans ...10-9
Bean design fundamentals ... 10-9

What does the Bean do? .. 10-9
How is the Bean used? ... 10-10
What kind of properties, methods, and events does your Bean need? .. 10-10

Creating a Bean ..10-10
Overview of creating a Bean .. 10-10
Using the JavaBean Wizard ... 10-12
Testing your Bean ... 10-18
Updating Beans that are local to your project .. 10-18
Automatically updating Beans in the Component Library 10-19
Packaging your Bean for distribution .. 10-21
Adding an existing Bean to the Component Library 10-21
Deleting Beans from the Component Library ... 10-23
Converting component description files to Beans .. 10-23

Viewing and changing Bean properties ..10-25
Using the Property List to modify Bean properties 10-25
Using a customizer to configure a component on a form 10-26
Adding Visual Cafe information to a Bean .. 10-27

Visual Cafe BeanDescriptor attributes .. 10-27
 xix

ActionDescriptor .. 10-28
Code samples .. 10-29

Section III Professional Features

Chapter 11 Creating Native Win32 Java Applications

About native Win32 applications ..11-1
Native libraries and DLLs included with Visual Cafe 11-2

Creating native executables and DLLs ...11-2
Considerations when creating native Win32 Java applications 11-3
Linking native Win32 applications .. 11-4
The main class in bytecode and native applications .. 11-5
Deploying native Win32 applications, DLLs and libraries 11-5
Debugging native programs ... 11-6

Setting project options for native programs11-7
Specifying the name of a native application or DLL .. 11-7
Specifying the working directories for a native program 11-9
Specifying a program for running and debugging a DLL 11-9
Specifying a class or package to be exported .. 11-10
Specifying advanced Win32 compiler options .. 11-12
Including library files to link into your native program 11-14
Making a library file available to a project ... 11-16
Specifying library file search paths ... 11-18

Using native command-line tools ..11-18
Registering DLLs using SNJREG .. 11-19
Using OPTLINK and SMAKE with Java programs .. 11-20
Displaying the contents of binary files using OPTDUMP 11-21
Displaying the component version using Cafever ... 11-21
Converting coff object files to omf using coff2omf 11-21

Working with samples of native applications11-22
Example: Creating an executable file .. 11-22
Example: Creating an executable that uses a DLL 11-23
xx

Chapter 12 Using Version Control with Visual Cafe

About version control ...12-1
Installing version control systems .. 12-2
Enabling version control for a project ... 12-3
Managing projects using the SCC interface ... 12-4

Using version control ...12-4
Configuring version control .. 12-5
Setting version control options .. 12-7
Adding and removing files .. 12-10
Checking files in and out .. 12-13

Working with the Visual Cafe project file and version control 12-15
About renaming files in conjunction with version control 12-16
Getting the latest version of a file .. 12-17
Refreshing file status ... 12-18
Showing the version control history of files ... 12-18
Showing the differences between files .. 12-19
Showing version control properties for files ... 12-20
Running your version control system ... 12-21
Setting the default version control user name .. 12-21

Chapter 13 Localizing Your Java Programs

About localization ...13-1

Using localization ...13-3
Localizing a project with the Localization tool ... 13-4
Localizing individual strings with the Localization tool 13-6
Localizing auto-generated code ... 13-9
Adding or deleting a locale ... 13-11
Adding information to the resource bundle for a locale 13-13
Editing a resource bundle .. 13-13
Converting between native and ASCII characters .. 13-14

Section IV Appendixes
 xxi

Appendix A Updating Visual Cafe with LiveUpdate

About LiveUpdate .. A-1
Using LiveUpdate over the Internet ...A-2
Using LiveUpdate with your modem ..A-3

Configuring your modem ...A-3

Uninstalling LiveUpdate upgrades ... A-6
Using LUCLEAN.EXE ..A-6

Appendix B Troubleshooting

Programming concerns ... B-2
Limitations of the Java language ..B-2

Java and case sensitivity ..B-2
Hardware limitations ...B-2

Browser issues ..B-3
When do you have to write your own code? ..B-3
Disabling automatic code generation in Visual Cafe ...B-4
Disabling sections of automatically-generated code ...B-4

Repairing a corrupted Visual Cafe environment B-4

Glossary .. Glossary-1

Index .. Index-1
xxii

I

T h e E s s e n t i a l s

C H A P T E R 1
Welcome to Visual Cafe

Symantec’s Visual Cafe family of products is the first visual Rapid
Application Development (RAD) tool designed exclusively for the Java
programming language. Visual Cafe is a complete form-based development
environment that provides a rich set of What-You-See-Is-What-You-Get
(WYSIWYG) tools and components that enable you to develop, debug,
and deploy high-performance Web applets and stand-alone Java
applications. Additional tools such as JavaBeans and Java component
libraries, graphics libraries, and templates provide the complete solution
for the Java developer or sophisticated Web developer.

Visual Cafe is available in three editions:

◆ Visual Cafe Standard Edition (SE) provides a Java development
environment that’s suitable for the Web developer with technically
sophisticated needs. This edition is also a good development
environment for programmers who are new to Java.

◆ Visual Cafe Professional Edition (PE) is for developers who need the
latest and most powerful Java features in their development
environment. Visual Cafe Professional Edition includes all the features
available in the Visual Cafe Standard Edition, as well as many
additional features that enhance its capabilities.

◆ Visual Cafe Database Edition (DE) is for database application
developers who want full database connectivity. Visual Cafe Database
Edition includes all the features available in the Visual Cafe
Professional Edition, as well as additional features that relate to
database connectivity.
1-1

Chapter 1: Welcome to Visual Cafe
Visual Cafe features

This manual describes the features that are common to each edition of the
Visual Cafe family of products: Visual Cafe Standard Edition, Visual Cafe
Professional Edition, and Visual Cafe Database Edition. Each edition
includes a core set of tools that enable you to create Java applets, servlets,
and applications. The Professional Edition includes all the features found in
the Standard Edition, plus a set of additional features that includes
enhanced debugging capabilities, version control integration, a wizard that
helps you create servlets, native compiling, and a tool that simplifies the
process of program localization. If you’re using the Visual Cafe Standard
Edition, consult the following table to see which features that edition
supports. All the features that are in the Visual Cafe Professional Edition are
also in the Visual Cafe Database Edition, which also includes a specialized
set of features for adding database connectivity to your programs. An
additional manual, the Visual Cafe Database Developer’s Guide, is included
with the Database Edition; that manual covers just the features that are
specific to the Database Edition.

Included with the Professional and Database Editions is a Web-page
designer and publisher called Visual Page. Visual Page provides a
WYSIWYG environment that includes a visual designer, a source code
editor, and a publishing utility. Visual Page comes with its own
documentation and online help. For further information, see the Visual
Page User’s Guide.

The features of Visual Cafe Standard Edition (SE) and Visual Cafe
Professional and Database Editions (PE/DE) are shown in the following
table:

Feature SE PE/DE

JFC (Swing) component support X X

JFC (Swing) MenuDesigner support X X

Improved Interaction Wizard and interaction editing features X X

JDK 1.1.7a and 1.2 support X X

Javadoc Editor and Viewer X X

Improved deployment features X X

Improved AutoJAR tool and JAR Viewer X X
1-2

What’s new in Visual Cafe version 3.0
What’s new in Visual Cafe version 3.0

In this section you’ll find a brief description of each of the features that are
new or improved in Visual Cafe version 3.0. The features that pertain to all
editions of Visual Cafe — Standard, Professional, and Database — are
described first. Next, the new or improved features that apply only to the
Professional and Database Editions are described.

New or improved features in all editions

Here you’ll find a short description of the new or improved features that
are found in all three editions of Visual Cafe version 3.0.

Rapid JavaBeans development X X

Code Helper X X

Syntax Checker X X

Improved GridBagLayout support X X

Improved version control support X

Localization tool X

Servlet project template wizard X

Native x86 compiler X

Improved customizable user interface (MDI) X

Incremental debugging X

Remote debugging X

Web browser debugging X

Visual Page integration X

Feature SE PE/DE
1-3

Chapter 1: Welcome to Visual Cafe
JDK 1.1.7a and 1.2 support

Visual Cafe supports the latest in Java technology. You can create, compile,
and deploy Java code that complies with the JDK (Java Development Kit)
1.1.7a.

You can also choose to compile and debug your code using the latest beta
version of the JDK 1.2. JDK 1.1.7a is an integral part of the Visual Cafe
environment, while JDK 1.2 is not. If you use JDK 1.2, you won’t be able to
see your 1.2 code represented in the Form Designer or menu designers. To
use JDK 1.2, you need to download it from the Sun Microsystems Web site
(http://java.sun.com) and install it for Visual Cafe by creating an
internal Java Virtual Machine (Java VM) for it. For more information about
using different VMs, see “Using different Java virtual machines in Visual
Cafe” on page 5-22.

Improved Just-in-Time compiler (JIT)

Symantec’s Just-in-Time compiler, or JIT, is the fastest around. It’s so fast
that it has been included in Sun Microsystems’ Java Development Kit since
JDK 1.1.6. A fast JIT will keep your Java programs running quickly on end
users’ machines. For more information about the JIT compiler, see
“Symantec’s Just-in-Time compiler” on page 2-15. For details on compiling
your programs, see Chapter 5, “Compiling and Deploying Your Project.”

Swing support

Visual Cafe version 3.0 includes full support for Swing components. Swing
is the new set of Java visual components that you can use to create user
interface elements such as buttons, tables, lists, text fields, windows, dialog
boxes, and so on, as well as applets and applications. For more
information on Swing components, see Chapter 8, “Working with JFC/
Swing Components.”

The Swing Menu Designer

Visual Cafe now includes a Swing Menu Designer that makes it easy to
create or change menus. The Swing Menu Designer lets you type in menu
names, insert separators, insert menu objects, attach menu items to events,
and otherwise construct menus. For more information, see “Working with
Swing menus” on page 8-22.
1-4

What’s new in Visual Cafe version 3.0
Improved interaction features

You can create and manage interactions more easily than ever with Visual
Cafe’s improved Interaction Wizard. You can select actions, methods,
properties, arguments, and strings associated with interactions in a wizard
that takes you step by step through the process of creating interactions.

Interactions display in the Form Designer as arrows between or within
objects, and you can choose to see some or all interactions. Deleting
interactions is as easy as clicking an interaction arrow in the Form Designer
and pressing the DELETE key.

For more information, see Chapter 9, “Working with Events and
Interactions.”

Javadoc support

You can now easily create and edit Javadoc comments and quickly
generate the associated HTML files. Use the Javadoc Editor to create and
edit your Javadoc comments, and use the Javadoc Viewer to browse
Javadoc comments. For more information, see “Using the Javadoc Editor”
on page 4-61 and “Using the Javadoc Viewer” on page 4-66.

Rapid JavaBeans development

If you’re creating a Bean, but you haven’t added it to the Component
Library, now you can also quickly update it so that it can be used in other
projects. For more information, see “Packaging your Bean for distribution”
on page 10-21.

As you work on a JavaBeans component, you can automatically update the
Bean in the Component Library and all instances of that Bean in one step.
For more information, see “Automatically updating Beans in the
Component Library” on page 10-19.

Improved AutoJAR tool and JAR Viewer

Use AutoJAR to quickly put your Bean into the Component Library. Any
open projects that use that Bean will then use the updated version. Now
when you’re creating JAR files, your settings will persist, so you won’t have
to reset your JAR options each time you update your files. Use the JAR
Viewer to easily view JAR files much like you do ZIP files in the Windows
environment. You can also use the JAR Viewer to view a JAR file’s manifest
1-5

Chapter 1: Welcome to Visual Cafe
file. For more information about using JAR files in Visual Cafe, see “Using
JAR files” on page 5-55.

One-step deployment

Not only can you deploy to JAR files, but now you can deploy to ZIP files,
CAB files, and directories. You can also deploy directly to an FTP server. If
you want to deploy to a different operating system or deploy outside of the
Visual Cafe environment, you can use the new command-line deployment
utility. The JAR command on the Project menu has now been replaced
with the Deploy command (also on the Project menu). For more
information about Visual Cafe’s deployment features, see “Deploying your
project” on page 5-31.

Code Helper

As you type in the Source window, you can use the Code Helper to
suggest Java language keywords, depending on the context. You can use
the Code Helper consistently, or you can use it just when you need it. For
more information, see “Using the Code Helper” on page 4-49.

Syntax Checker

When you have the Syntax Checker enabled, errors in your source code
will be highlighted. You can quickly find typing and syntax errors, which
will help you avoid problems later. For more information, see “Using the
Syntax Checker” on page 4-51.

Improved GridBagLayout support

When you’re using a component layout of GridBagLayout , you can use
the new GridBagConstraints Editor to easily manage the contraints of this
complex layout manager. For more information, see “Arranging
components in GridBagLayout” on page 7-45.

New Java macro system

Visual Cafe provides an extensive macro capability, which you can use to
automate common, repetitive, or lengthy editing tasks. Visual Cafe macros
are now programmed in Java. Visual Cafe macros can perform most Visual
Cafe commands, so you can use them to automate many Visual Cafe
operations. For more information on using the Visual Cafe macro system,
see the Macro Reference in the Online Help.
1-6

What’s new in Visual Cafe version 3.0
New features in the Professional and Database Editions

In this section you’ll find a short description of the features that are new to
Visual Cafe Professional Edition and Visual Cafe Database Edition. For
detailed information about features that are new to just the Visual Cafe
Database Edition, see the Visual Cafe Database Developer’s Guide.

Localization tool

If you’re developing programs for non-US English systems, you can use the
Localization tool to quickly and easily localize your programs. Now you
can create resource bundles for your files so that they can be localized for
another language or region. You can also add and edit locales with Visual
Cafe. For more information, see Chapter 13, “Localizing Your Java
Programs.”

Version control integration

You can now access your version control software from within the Visual
Cafe environment. Check in, check out files without having to exit your
work in Visual Cafe. For more information, see Chapter 12, “Using Version
Control with Visual Cafe.”

Servlet support

You can easily create a servlet by using Visual Cafe’s new Servlet project
template wizard, which is found with the project templates. Visual Cafe
also provides the tools you need to debug your servlets. For more
information, see “Creating a servlet” on page 3-30.

Improved customizable user interface

You can now customize your workspace even further by using dockable
windows. You can position windows so that they “dock” against other
windows or the edges of the environment, or you can have them float
undocked so that you’re free to move them. For more information, see
“Setting environment variables in the sc.ini file” on page 3-72.
1-7

Chapter 1: Welcome to Visual Cafe
New features in the Database edition

If you want to include database connectivity in your programs, you’ll be
interested in the new features of the Visual Cafe Database Edition. You’ll
want to see the Visual Cafe Database Developer’s Guide for details about
these features, but here’s a short description of each of them:

◆ Full design-time support for most JDBC drivers including JDBC/ODBC
Bridge, Oracle Lite driver, and dbANYWHERE middleware.

◆ Seamless databinding to standard JFC/Swing components.

◆ Extensive stored-procedure support, including Beans, wizards,
customizers, and test tools. This reduces programming time and
enhances application functionality.

◆ Robust support for database functionality:

❖ Query-By-Example (QBE)

❖ Dynamic list binding (show one value, store another)

❖ Data-validation adapters that ensure client-side integrity. You
can use the validation functions that are provided or develop
your own and spawn validation calls to databases, application
servers, or middleware.

❖ Calculation adapters and functions generate your own client-
side values using functions such as addition and multiplication.
You can use the calculation functions that are provided or
import your own.

❖ AWT databound Mask and Currency fields

◆ The event system provides an audit trail of events, SQL, and
transactions, which simplifies tracing user and database activity.

◆ Customizable application components:

❖ A status bar (DBStatusBar) provides interactive information
about record status, form status, and transactions.

❖ A database toolbar (DBToolBar) provides an efficient way to
access functions such as record navigation, queries, updates,
and the like.

◆ Live data during development allows you to make changes in real-
time, without the need to recompile.

◆ Customizer and data binding for the standard JFC/Swing JTable
component is provided:
1-8

Version compatibility
❖ Multi-column sorting

❖ Easy customization of JTable ’s visual properties, including
fonts, background colors, column widths, and so on.

❖ The ability to embed complex column editors within your
JTable , including mask fields, currency fields, combo-boxes,
checkboxes, or your own JFC/Swing components.

❖ JTable databinding through JFC Model architecture.

❖ Single-click addition of row number and row state columns to
your JTtable .

◆ Database-related wizards and components have been enhanced to be
more robust. Now there are more wizards, more property editors,
more Bean customizers, and extensive smart properties to greatly
increase productivity.

Version compatibility

In general, any applet or application that ran in JDK 1.0.2 should run
correctly in Visual Cafe version 3.0. Incompatibilities may exist where
functionality has changed between component versions.

Applets that depend on any new JDK 1.1 APIs will not work in browsers
that support only 1.0.2, such as Internet Explorer 3.0, Netscape Navigator
3.0, and the alpha and pre-beta1 versions of the HotJava browser. In
general, however, applets that rely only on APIs defined in 1.0.2 (but
compiled with the JDK 1.1 compiler) will run on 1.0.2 browsers.

Visual Cafe automatically converts your Visual Cafe 2.x projects to Visual
Cafe version 3.0 projects. During this conversion process, all source code
generated by Visual Cafe 2.0 is converted from the JDK 1.0.x event model
to the JDK 1.1.x event model. For more information about converting code
from JDK 1.0 to 1.1, see “Migrating Java source files from JDK 1.0 to JDK
1.1” on page 3-38.

Menu rearrangement

If the most recent version of Visual Cafe you’re accustomed to using is
before version 2.5, you’ll notice that some of the menu items have changed
in version 3.0. This may affect your work, especially if you used macros in
pre-2.5 versions of Visual Cafe.
1-9

Chapter 1: Welcome to Visual Cafe
Visual Cafe versions prior to 2.5 did not have a View menu, so some items
from the pre-2.5 Window menu were moved to the View menu in later
versions. In addition, some items in the File menu were rearranged or
added, and one item in the Project menu was moved to the new View
menu.

Here’s an example of how these menus in Visual Cafe have changed (only
the File, Project, and Window menus are affected):

1

1

2

1. These menu items were
rearranged within the File menu in
versions 2.5 and later.

2. These menu items were moved to
the View menu in versions 2.5 and
later.

2

1-10

Visual Cafe documentation
Here’s an example of what the menus look like in versions after 2.5:

Updating Visual Cafe

From time to time, Symantec provides updates to Visual Cafe. You can
download updated versions from Symantec’s Web site by using a utility
called LiveUpdate. See Appendix A, “Updating Visual Cafe with
LiveUpdate,” for information on using LiveUpdate.

Visual Cafe documentation

Visual Cafe comes with extensive documentation and online help to assist
you in the process of developing applets and applications. These
documents are described in this section.

1

2

1. These menu items have been
regrouped within the File menu. The
Open Project menu item has been
added.

2. These items have been moved from
the Window menu to the View menu.

3. This menu item has been moved from
the Project menu to the View menu.

3

1-11

Chapter 1: Welcome to Visual Cafe
Visual Cafe Getting Started

The Visual Cafe Getting Started Guide consists of a tour of the main
features of Visual Cafe.

You may want to work through the tour, which takes less than an hour,
before beginning work in Visual Cafe. The tour is designed to familiarize
you with the main features of Visual Cafe by guiding you through the
process of building a working Java applet. It requires no previous
experience with Java, and is a quick way to learn Visual Cafe.

Visual Cafe Sourcebook

The Visual Cafe Sourcebook presents coding samples, in the form of
applications and servlets, that were developed in Visual Cafe, and
describes them in detail so you can understand how they work and how
they were built. You can modify the code in this book to build your own
applications, applets, and servlets.

Online Help

Visual Cafe has extensive online help that describes all of the procedures
for building Java applets and applications. To access Visual Cafe’s Help,
choose Help Topics from the Help menu. The online help is also context-
sensitive, which means that you can press F1 in most areas of Visual Cafe
and receive information that pertains to your current activity.

You can also access information about Visual Cafe’s components and
review the Java API documentation from Sun Microsystems. You can access
information about an individual component by typing the name of the
component in the Index tab of the Help window, choosing Components
Reference from the Help window’s Contents tab, or selecting a component in
the Component Library and pressing F1.

Visual Cafe also includes online help for the Java macro system. To access
this help topic, choose Macro Reference from the Help menu.
1-12

Visual Cafe documentation
ReadMe file

The ReadMe file is the first document you should read before using Visual
Cafe. It contains late-breaking news, work-arounds, and known issues.
This file is available for viewing at the end of the installation process, as
well as from the Windows Start menu.

User’s Guide

This manual, the Visual Cafe User’s Guide, may be the document you turn
to most frequently as you work with Visual Cafe. It contains both
conceptual information and step-by-step procedures. This manual is
divided into three parts: Part One, The Essentials; Part Two, Using
Components; and Part Three, Professional Features.

Part One introduces you to Visual Cafe and takes you through the process
of creating an application or applet. This section describes Visual Cafe’s
development environment and covers the basics of project development,
with step-by-step instructions for creating, compiling, running, debugging,
and deploying a project.

Part Two provides information on using various types of components,
including AWT-based components, Swing components, and JavaBeans. In
this section you’ll also learn how to create interactions between
components.

Part Three provides information on features that are not in Visual Cafe
Standard Edition. These include native Win32 support, version control, and
localization features.

Part Four consists of appendix information, such as using LiveUpdate to
get the latest version of Visual Cafe, and troubleshooting information.

Portable Document Format

Portable Document Format (PDF) versions of the books are included with
your copy of Visual Cafe. These documents require that Adobe Acrobat
Reader be installed. Adobe Acrobat Reader is included on the installation
CD-ROM of your Visual Cafe product. It’s also freely available from Adobe
Systems at http://www.adobe.com .
1-13

Chapter 1: Welcome to Visual Cafe
How much programming do I need to know?

In Visual Cafe it’s possible to develop Java programs without writing a
single line of source code. There are many ways to obtain Java programs,
such as books, the Internet, and your friends and colleagues. You can drop
these programs into Visual Cafe and have an applet, application, or Bean
that’s ready to use. However, sometimes these programs need
modifications, and that’s where real challenges to your programming
expertise occur.

This manual assumes that you’re familiar with the Java programming
language or are learning how to program in Java. It’s beyond the scope of
this manual to teach Java programming, although you can learn more
about Java by using Visual Cafe. To learn how to program in Java, you can
consult one of the many excellent books that extensively explore the Java
language. You can also search the Internet and find many well-written Java
tutorials and summaries, as well as abundant resources to guide you on
your way to becoming a Java developer. You might want to participate in a
Java programmers’ special interest group (SIG) in your area. You can find
user groups on the Web or through Usenet newsgroups.

To use Visual Cafe, it helps to have a basic understanding of object-
oriented programming languages, such as C++. Many of the principles and
concepts of Java are based on those found in C++, although you should
note that there are also some vast differences between Java and C++.

You should also have a basic understanding of cross-platform operating
system concepts. This knowledge is useful, for example, when you’re
developing multithreaded Java programs, because all platforms handle
threading differently.

If you’re using Visual Cafe Professional Edition, you need to have basic
Microsoft Windows programming skills in order to develop native 32-bit
applications and libraries. Chapter 11, “Creating Native Win32 Java
Applications,” shows you how to create native Win32 applications.

If you’re using the Database Edition, a basic understanding of Structured
Query Language (SQL) and client-server models is necessary if you want to
build complex databound Java programs.

Finally, a basic understanding of Hypertext Markup Language (HTML) is
helpful so you can develop relationships between your Java applets and
Web pages.
1-14

Conventions used in this manual
Conventions used in this manual

This manual uses the following typographic conventions:

◆ Names of files, resources, classes, methods, and variables, as well as
code fragments and information you type, appear in the code
typeface . Metanames appear in italic. A metaname is a descriptive
placeholder for a real name. For example, when referring to a project’s
.vep file, we say projectname.vep , rather than specifying a specific
project name.

◆ Terms that appear in the glossary appear in bold type when they’re
defined in the text.

◆ Names of menus, menu items, buttons, and other user interface
elements appear in this typeface.

◆ Keys you press at the same time are shown as follows: CTRL-G (press
the CTRL and G keys simultaneously). Please note that even though
the letter keys are listed in uppercase, you should not hold down the
SHIFT key when executing these key combinations unless the SHIFT
key is listed as part of the combination.

◆ We use the word “program” to refer to whatever you’re creating with
Visual Cafe, whether it’s an applet, application, library, or servlet.

◆ Wherever possible, we use the term “folder” rather than “directory” in
accordance with standard Windows style, except in cases where the
Visual Cafe interface uses “directory.” Since Windows also uses the
DOS system (which primarily uses the term “directory”), and Visual
Cafe makes use of this DOS–Windows relationship, some areas of the
product deal with “directories.”

What’s next?

Before you begin developing your Java applet or application, take a look
at Chapter 2, “Developing in Visual Cafe,” which provides information on
the basic features of Visual Cafe and includes an overview of creating an
applet and an application. Remember, if you’re new to Java development,
the tour in the Visual Cafe Getting Started Guide is a great place to start.
1-15

C H A P T E R 2
Developing in Visual Cafe

Visual Cafe simplifies Java programming by providing an Integrated
Development and Debugging Environment (IDDE). In this
environment it’s possible to design, develop, and build an applet or
application without having to write a single line of source code. Visual
Cafe helps you reference the rules of the Java language, automatically
create and update source code, find and fix development problems, and
optimize the entire process of creating Java applets and applications. In
other words, Visual Cafe’s tools provide everything you need to develop a
Java program.

When a development environment is integrated, this means that the tools
in the environment work together. For example, the compiler might find
and display an error in the source code. With a double-click on the
highlighted error, Visual Cafe opens the source file in the Source window
and jumps to the line in the source code where the error occurred. Once at
the error, Visual Cafe then displays another window with reference
information about how the code should be formatted.

A large part of applet and application development involves adding and
arranging components in forms. Visual Cafe provides tools to make
designing forms a simple process.

This chapter introduces the basic features of Visual Cafe and provides a
brief overview of the steps involved in creating a Java program. These
features and procedures are described in detail in subsequent chapters.
2-1

Chapter 2: Developing in Visual Cafe
The Visual Cafe environment

The Visual Cafe development environment provides windows, toolbars,
editors, and wizards that allow you to create your Java applet or
application in an easy-to-use, visually-oriented work area. These features
are introduced in this section.

Windows

Visual Cafe windows are the areas on your screen that you use to develop
your programs. Some windows allow you to enter and edit information,
while others help you monitor the status of your project. These windows
include:

◆ Form Designer – You can drag and drop components into this primary
development area and arrange them for easy access.

◆ Project window – You can work with the different parts of your project
in this tabbed window, which offers three views: Objects, Packages,
and Files.

◆ Class Browser – A three-pane window that lists all the classes,
methods, and data items contained in your program.

◆ Component Library – The repository for all components, including
your custom components.

◆ Property List – Lists component properties and lets you control them.
You can resize a component, name it, change its visibility, assign
values, and change its colors and fonts.

◆ Source window – Use this window to add and customize source code
for your project at any phase of the development cycle.

◆ Breakpoints window – Lets you set breakpoints while you’re
debugging to validate parameters and states.

◆ Call Stack window – Displays a list of active methods and variables
while you’re debugging.

◆ Variables window – Use this window to monitor and change variables
in your expressions as you debug your code.

◆ Watch window – Here you can watch the debugger evaluate selected
expressions.
2-2

The Visual Cafe environment
◆ Threads window – Allows you to monitor and debug threads in your
program.

◆ Messages window – Collects and displays information from Visual Cafe
as you’re running or debugging your project.

◆ Javadoc Viewer – Where you can browse your Javadoc comments in
generated HTML files.

◆ JAR Viewer – Lets you see the contents of JAR (Java Archive) and ZIP
files. You can quickly locate documentation for files, packages,
JavaBeans in the Component Library, classes and methods in the
Source Editor, and more.

Toolbars

Visual Cafe provides an extensive set of toolbars. Toolbars can be docked
in the Visual Cafe window or floated on the screen; docked toolbars offer
easy access to your favorite components.If you’re more comfortable using
menu commands, you can hide your toolbars for a clutter-free design
environment.

The following toolbars are available in the Visual Cafe Project window:

◆ Standard – Contains buttons for working with files, printing, and
copying and pasting.

◆ Component Palette – Contains buttons for adding components to a
form.

◆ Layout – Contains buttons for arranging the placement of components
on a form.

◆ Views – Contains buttons for debugging views.

◆ Debug – Contains buttons for debugging actions.

◆ Workspace – Lets you select the debugging or editing workspace.

When you switch from one environment to another in Visual Cafe,
different functions become available. For example, when you work in the
Class Browser or Hierarchy Editor, the Classes menu is enabled to assist
you in working with classes. When you work in the debugging
environment, various debugging windows, menus, and tools appear.
2-3

Chapter 2: Developing in Visual Cafe
Editors

Visual Cafe has three editors for creating and managing Java projects. You
can use these editors to control various aspects of project development,
such as editing source code and manipulating classes.

◆ Source window – A tool for editing source code. For more information
about working with Java source code, see Chapter 4, “Working with
Source Code.”

◆ Class Browser – A three-pane window that lists all of the classes,
methods and data items contained in your program. For more
information about using the Class Browser, see “About classes,
members, and the Class Browser” on page 4-1.

◆ Hierarchy Editor – Provides a visual representation of the classes in
your project and their inheritance relationships. For more information
about using the Hierarchy Editor, see “About the Hierarchy Editor” on
page 4-35.

◆ Javadoc Editor – While working in the Source window, you can use
the Javadoc Editor to quickly add Javadoc tags that document your
code. This documentation will appear in HTML files when you
generate Javadoc for the file.

Wizards

To streamline project development, Visual Cafe includes a number of
wizards, interactive help utilities that guide you through a complex task.
In a wizard, you enter or select information in a sequence of screens, or
pages, then click a Finish button to complete the task.

Some key wizards in Visual Cafe are:

◆ Bean Wizard – Inserts JavaBeans components or lets you create your
own to insert into your projects. For more information, see Chapter 10,
“Working with JavaBeans Components.”

◆ Insert Class Wizard – Helps you insert the right class in the right place
in your project. See “Using the Insert Class Wizard” on page 4-15 for
details.

◆ Interaction Wizard – Helps you build relationships between
components, or between a component and itself. These relationships
2-4

The Visual Cafe environment
designate the actions to take when an event is triggered on a
component. For details, see “Creating an interaction with the
Interaction Wizard” on page 9-8.

◆ Servlet project template wizard – When creating a new project from a
template, use the this wizard to quickly create a servlet.

How Visual Cafe keeps work synchronized

As you work in the Project window and Form Designer, Visual Cafe
automatically adds the source code files for your forms to your project and
generates the Java source code for components. As you modify a
component, the underlying Java code changes.

When you’re editing the source code for a component directly in the
Source window, any change that you make is interpreted and the source
change is reflected in the Form Designer.

The power behind Visual Cafe component coding is its source-parsing
technology. The Visual Cafe parser reads your Java source code in the
background as the code is added to your project. This reading results in a
symbolic object map of your source code. This map is used by the Class
Browser and Hierarchy Editor to allow you to navigate and edit your Java
classes. The Visual Cafe source parser is independent of the compiler and
frees you from having to compile your code before obtaining class
information.

When you edit source files outside of the Visual Cafe environment, the
changes are reflected the next time you open the project in Visual Cafe.
See “Adding custom code to a source file” on page 4-48 for important
guidelines.

Understanding Visual Cafe components

In Visual Cafe, you add components to your forms to assemble applets and
applications. Components are reusable objects that you can store in a
library and add to one or more projects. Components can accept input
from a user and perform specific actions (for example, a user could click a
button that caused an animation to play). Components can also be used to
display the results of an action (for example, clicking a button could
display the results of a mathematical operation).
2-5

Chapter 2: Developing in Visual Cafe
You can use standard graphical user interface (GUI) techniques for
dragging and dropping components into and among other components.
Visual Cafe also has unique drag-and-drop behavior in the Project and
Source windows.

For more information about components, see Chapter 7, “Working with
Components.”

AWT Components

A set of AWT (Abstract Windowing Toolkit) components is included with
Visual Cafe. These components include user-interface elements such as
windows, dialog boxes, text-entry fields, and buttons. These components
can be placed into your project as is, or customized to meet your needs.

For more information on AWT components, see Chapter 7, “Working with
Components.”

Swing components

Swing is the name given to the new set of Java visual components, which
you can use to create user interface elements such as buttons, tables, lists,
text fields, and so on, as well as applets, applications, windows, and dialog
boxes. There is a large set of Swing components that includes one
component for each AWT component plus many variations.

Swing components, which are part of the Java Foundation Classes (JFC),
have the following advantages over the older AWT components:

◆ They are “lightweight” components that require fewer system
resources (see “About lightweight and heavyweight components” on
page 7-6 for information).

◆ You can control the look and feel (appearance and behavior) of Swing
components.

◆ A number of the components allow you to place an image icon on
them.

◆ The Swing set of components includes types of components that are
not included in AWT, such as a scrolling pane.

Swing components are 100% pure Java, which means you can easily
subclass Swing components to create your own components. In addition,
the fact that Swing components are written entirely in Java means that the
2-6

The Visual Cafe environment
Java code determines what they look like, so that you can control their
final appearance.

Swing also includes an applet component, a frame component for creating
applications, a window component, a dialog component, and many other
containers. Visual Cafe includes project templates for Swing applets and
applications, and includes a Swing menu editor that lets you easily design,
build, and change Swing menus.

For more information about Swing, see Chapter 8, “Working with JFC/
Swing Components.”

JavaBeans components

You can also use JavaBeans components in Visual Cafe. JavaBeans is a
portable, platform-independent Java component model. A JavaBeans
component, or Bean, is a reusable component that can be manipulated
visually in a builder tool such as Visual Cafe. Beans can be combined to
create applications or applets.

In Chapter 10, “Working with JavaBeans Components,” you’ll learn how to
create JavaBeans components and add them to your projects, as well as
how to test your components and package them for distribution.

Forms hold your Java program together

Forms are containers for components that allow a user to interact with your
program. A form might contain a series of buttons for a user to click, a field
where a user enters text, or a menu from which a user selects commands.

You use frames, another type of form, when creating a stand-alone
application. An example of an application that uses a frame is the JavaPad
application, which is included on your Visual Cafe CD. Frames generally
include toolbars, menu bars, and other windows.

Visual Cafe provides several tools to help you create forms, including the
Form Designer.

For more information, see Chapter 7, “Working with Components.”
2-7

Chapter 2: Developing in Visual Cafe
Projects keep your work together

When developing an applet or application in Visual Cafe, you work mainly
with projects. A project is a collection of files that make up your Java applet
or application. You create a project to manage and organize these files.

When you open a new Visual Cafe project, all the default files required to
begin development are created and included as part of your project. In
addition, project elements may include HTML files, frames, and forms.

When you save your work, Visual Cafe saves the entire project to the
Project folder as a .vep file, along with all the changes and other files you
may have added to your project.

Chapter 3, “Working with Projects,” describes projects in detail.

Using workspaces to customize your work environment

A workspace is a saved arrangement of windows. Because the various tools
in Visual Cafe are displayed in many individual windows, workspaces are
used to group windows that have related functions. For example, when
you edit source code you can use a workspace that displays the Source
window, the Messages window, and the Project window. When you’re
debugging your program, you can use another workspace that displays
windows for the different debugging tools.

Workspaces provide a convenient way to switch from one screen layout to
another. Workspaces are task-oriented, as opposed to project-oriented; you
create workspaces for different tasks, such as editing or debugging.

Visual Cafe supports the extended mouse functions of the Windows 95, 98,
and NT interface. Right-clicking on various components of the windows
opens context-sensitive pop-up menus. As you work with Visual Cafe, try
right-clicking on different parts of the screen. You may discover some
useful shortcuts.

Visual Cafe has a customizable user interface. You can use Single
Document Interface (SDI) or Multiple Document Interface (MDI) for
your development environment. SDI was used exclusively in versions of
Visual Cafe prior to version 2.5.
2-8

About applets, applications, servlets, and libraries
Here’s an example of what the MDI environment looks like:

While using MDI, you work with regular windows, which appear in the
workspace area, and dockable windows, which can be docked along the
edges of your Visual Cafe workspace or can be floating in the workspace
area.

When using MDI mode, some window positions are saved with the
workspace and the project. For more information on setting your
workspace options, see “Setting environment variables in the sc.ini file” on
page 3-72.

About applets, applications, servlets, and
libraries

The program coding techniques used to create applets, applications,
servlets, and libraries are fundamentally similar. Both applets and

Docked window Workbook tab Workspace area Docked window

Click this button to
expand or collapse
a docked window
2-9

Chapter 2: Developing in Visual Cafe
applications are created using the same basic programming concepts.
Because a Web browser is responsible for running an applet, program
instructions for applets have a different organization than the instructions
for applications.

Applets

An applet is a Java program that runs on a Web page in a Java-enabled
Web browser. Unlike an application (see the following section), an applet
cannot run on its own; it must be run in a browser.

Applets, like all Java programs, are made up of source code that’s compiled
into a class file. A reference to the class file is placed in a Web page. The
Web page is downloaded across the Internet using a Java-capable Web
browser. As the bytecode contained in the class file is read, the Web
browser’s Java interpreter converts the bytecode into machine-specific
instructions, executes the program, and hosts the running applet in a Web
page.

With earlier versions of Java, applets always adopted the look and feel of
the client machine’s operating system and native interface controls. A Java
applet would look and feel like it was written for the Macintosh when it
ran in the Macintosh environment, look and feel like it was written for
Windows when it ran in the Windows environment, and reflect the look of
the various flavors of UNIX when run in a UNIX environment. However,
with the new Swing components (see “Swing components” on page 2-6),
you can decide whether your applet has a user interface that looks and acts
the same way on all platforms, if the applet takes on the look and feel of
the local system, or if the user controls the look and feel of the applet.

In order to provide security for users running applets from Web pages,
applets can’t read from or write to a user’s local hard drive, and also have
other restrictions. See “Limitations of applets” on page 2-12 for more
information.

When you create an applet with Visual Cafe, you create a subclass of the
class Applet or, for JFC/Swing applets, JApplet . These applet classes
allow your applet to work within a Web browser and to use the capabilities
of the AWT and JFC/Swing components, which are user interface elements
that display to the screen and handle mouse and keyboard events.
Although your applet can use as many classes as it needs, the main
Applet or JApplet class triggers the execution of the applet. Its
signature is as follows.
2-10

About applets, applications, servlets, and libraries
For a JFC/Swing applet:

public class JApplet1 extends com.sun.java.swing.JApplet{

. . .

}

For an AWT applet:

public class myClass extends java.applet.Applet {

. . .

}

Java requires that your Applet subclass be declared as public . This is
true only of the main Applet class; all other classes may be declared
public or private as you wish.

Browser versions needed to run Visual Cafe 3.0 applets

In order to run Visual Cafe version 3.0 applets in a Web browser, you need
to have browsers that support JDK 1.1.

If you’re running Netscape Navigator, you’ll need:

◆ Netscape version 4.0 to 4.05 and the JDK 1.1 patch. You can download
the patch from http://developer.netscape.com .

◆ Netscape version 4.06 or newer.

If you’re running Microsoft’s Internet Explorer, you’ll need to have version
4.0 or newer.

If you’re running Sun Microsystems’ HotJava, you’ll need version 1.1 or
newer.

If you’re going to be signing applets, you’ll also need the Java plug-in 1.0
or newer. You can download the plug-in from
http://www.javasoft.com/products .

Advantages of applets

Java applets have a significant advantage over applications because the
Web browser software handles many of the functions that are required to
make the applet run. Because the browser software automatically provides
this functionality for applets, applets are an attractive type of Java program
to work with.
2-11

Chapter 2: Developing in Visual Cafe
Instead of running in a Web browser, applications run in a Java Virtual
Machine (Java VM), which contains a bytecode translator that converts a
Java file into instructions the client machine can execute. Stand-alone
applications have more overhead than applets; a stand-alone program must
be able to start and stop, perform memory management, and handle
display functions.

Limitations of applets

Sun designed Java to restrict the kinds of operations applets can perform.
Limitations are imposed on applets so that a destructive program from a
remote computer can’t steal information from or cause damage to your
system. To prevent applets from being destructive, Java enforces the
following limitations:

◆ Applets can’t read from or write to the file system of the computer
viewing the applet. This prevents damage to files and the spread of
viruses.

◆ Applets can’t run any programs (or parts of programs like shared
libraries or files) on the viewer’s computer. This prevents an applet
from calling destructive programs that don’t have the limitations of the
applet.

◆ Applets can establish connections only between the server computer
where the applet is stored and the client’s computer. This restriction
prevents the applet from connecting the client’s computer to another
server without the viewer’s knowledge.

Note that applets can run programs, access data, and write files on the
server where they are stored; security considerations limit applet activities
on the user’s system rather than the applet’s home system.

Java applications don’t have these limitations and can be used to build fully
functional programs. In addition, applications don’t depend on the
presence of a Web browser to run.

Applications

An application is a Java program that runs with a Java Virtual Machine
that’s installed on the client system. An application is not displayed on a
Web page. Java applications can be built easily and quickly because the
Java language includes useful features that are not standard in other
2-12

About applets, applications, servlets, and libraries
languages. For example, Java comes with libraries of program code that
make networking and graphics operations easy to write.

Java applications, unlike applets, can read from and write to the client
machine’s hard drive. And rather than being tied to the structure of a Web
page, applications can use their own frames, title bars, and menus.

Because applications are Java programs that run on their own, applications
can be as large or as small as you want them to be. The primary class of
the application needs to have a main method. When Java runs the
application, it calls this main method, and your program takes over from
there.

The signature for the main method always looks like this:

public static void main(String args[]) {. . .}

or

public static void main() {. . .}

The parts of this line of code have the following meanings:

◆ The public keyword means that the method can be “seen” or used
by other classes and components. Your application’s main method
must be declared public for the application to run.

◆ The keyword static specifies a storage class.

◆ The keyword void tells the main method not to return anything.

◆ The main method takes one argument, which is an array of strings.
This array is used for command-line arguments outside of Visual Cafe.

For example, the body of the main method contains all the code
your application needs to start executing. This includes code for
variable initialization or component instantiation.

Libraries

The libraries program type allows a collection of classes to be stored for
use as a class library. Visual Cafe includes libraries and DLLs (Dynamic
Link Libraries) to support native application and DLL development.

For more information about libraries, see Chapter 11, “Creating Native
Win32 Java Applications.”
2-13

Chapter 2: Developing in Visual Cafe
Servlets

A servlet is a Java program that can be thought of as a server-side applet.
That is, a servlet extends the capabilities of a server in the way that an
applet extends the capabilities of a browser.

More precisely, a servlet is a Java class based on the Java Servlet
interface. A servlet runs on a Web server and, in general, does the kinds of
things that you might do with CGI scripts, with these advantages:

◆ Servlets are written in Java.

◆ Where a CGI script needs a new process to handle each request, a
servlet can handle many requests at a time. The fact that there is only
one instance of a servlet also means that the servlet only needs to load
once.

◆ A servlet can share information between users.

Since a servlet runs on a server, it has no graphical user interface. Servlets
can extend server functionality in any way you want, but they generally
serve Web pages to users and read and respond to user input on HTML
forms. The sample servlet in this chapter serves preexisting Web pages, but
many servlets create Web pages in response to user input.

Most Visual Cafe users will never write servlets. They are useful only if you
are running a Web server and need to extend its capabilities.

If you have the Visual Cafe Professional or Database Edition, see the Visual
Cafe Sourcebook for an example of creating a servlet.

Debugging with Visual Cafe

After you write and execute your program, you might encounter errors,
such as compile errors (code construction or syntax errors, for example),
run-time errors that occur after you start the program (dividing by zero or
writing to a file that does not exist, for example), or logic errors (the
program does not do what you want it to do).

One of the most powerful tools in the Visual Cafe environment is the
integrated debugger. The debugger allows you to watch your programs
execute line by line. As your program executes, you can observe the
2-14

Compiler choices
various components of the program to see how they are behaving. By
using the debugger, you can monitor:

◆ The values stored in variables

◆ Which methods are being called

◆ The order in which program events occur

For more information about debugging, see Chapter 6, “Debugging Your
Program.”

Compiler choices

When you first create your project, you specify the type of compiler you
want to use. Visual Cafe provides two compilers: Symantec’s Java compiler
and Sun Microsystems’ Java compiler.

For information on compiling your programs, see Chapter 5, “Compiling
and Deploying Your Project.”

Symantec’s Just-in-Time compiler

The Symantec Just-in-Time compiler (JIT) that comes with Visual Cafe was
written specifically for the Java language and is generally faster than Sun’s
command-line compiler. Instead of typing a string of commands at the
command prompt, you click on a single icon to compile and execute a
program.

Visual Cafe displays information in the Windows environment instead of at
the DOS command line. Visual Cafe also provides useful messages that
indicate how the compiling process is progressing.

In addition, Visual Cafe provides many GUI-based development tools not
found in Sun’s JDK (see the following section).

Sun Microsystems’ Javac Compiler and JDK

When Sun Microsystems developed Java, they also created a compiler to
convert Java source code into .class files. The Java compiler developed
2-15

Chapter 2: Developing in Visual Cafe
by Sun is called javac.exe , and is run from a DOS command line. To
compile a Java program you need to run javac.exe , passing the name of
the source file and any other required parameters.

Sun’s Java compiler also comes with the Java Development Kit, or JDK.
The JDK is a collection of tools to help compile, debug, and test Java
programs. The JDK, like Sun’s compiler, uses a command-line interface.

Overview of creating a Java program

Developing a Visual Cafe applet or application happens in two stages:
designing the program and developing it. In the first stage, you design,
create, and implement the graphical user interface of your program. You
also make a very simple arrangement of all the components you need. In
the second stage, you bring your project to life by adding and modifying
source code, debugging, redesigning, and testing your project. If you’re
creating databound applets or applications, you must perform several
additional steps as part of the design stage (see the Visual Cafe Database
Developer’s Guide for information).

Overview of creating an applet

When you start up Visual Cafe, Visual Cafe creates all the project files
required for an applet or application, including source files and the project
file. Visual Cafe then loads these project files, and you can immediately
begin working on your project.

To create an applet:

1 Create a project with an applet template. Visual Cafe provides
several templates for your use.

See Chapter 3, “Working with Projects.”

2 Design the user interface by adding forms and components to your
project, customize the component properties, and create
component interactions.

This process is described in detail in Chapter 7, “Working with
Components.”

3 If necessary, modify the Java source code.

See Chapter 4, “Working with Source Code.”
2-16

Overview of creating a Java program
4 Set the project options.

See Chapter 3, “Working with Projects.”

5 Run the applet in the AppletViewer.

This step is explained further in Chapter 5, “Compiling and
Deploying Your Project.”

6 If necessary, debug the applet.

Chapter 6, “Debugging Your Program,” contains detailed information
on debugging in Visual Cafe.

7 Add the applet to your HTML page. You may also want to test-run
the HTML page on your local machine, then across an intranet or
the Internet.

For details, see Chapter 5, “Compiling and Deploying Your Project.”

8 Deploy the applet.

Deploying is described in Chapter 5, “Compiling and Deploying Your
Project.”

Overview of creating an application

Creating an application in Visual Cafe is very similar to creating an applet.

To create an application:

1 Create a project with an application template. Visual Cafe provides
several templates for your use.

See Chapter 3, “Working with Projects.”

2 Design the user interface by adding forms and components to your
project, customize the component properties, and create
component interactions.

This process is described in detail in Chapter 7, “Working with
Components.” For information on interactions, see Chapter 9,
“Working with Events and Interactions.”

3 If necessary, modify the Java source code.

See Chapter 4, “Working with Source Code.”

4 Set the project options.

See “Customizing a project” on page 3-55.

5 Test-run the application.
2-17

Chapter 2: Developing in Visual Cafe
Compiling and running a project is explained in Chapter 5,
“Compiling and Deploying Your Project.”

6 If necessary, debug the application. You should also test the
application outside of Visual Cafe once it’s been debugged.

Chapter 6, “Debugging Your Program,” contains detailed information
on debugging in Visual Cafe.

7 Deploy the application.

Deploying is described in Chapter 5, “Compiling and Deploying Your
Project.”

Now that you’ve been introduced to the basic features of Visual Cafe,
you’re ready to start working on a project. The next chapter provides
detailed, step-by-step instructions for creating a project.
2-18

C H A P T E R 3
Working with Projects

This chapter shows you how to create a project in Visual Cafe. It describes
the elements that make up a Visual Cafe project and includes step-by step
instructions for the following tasks:

◆ Creating a project

◆ Creating a subproject

◆ Using project templates

◆ Adding files to a project

◆ Sharing files among projects

◆ Using HTML files

◆ Customizing a project

◆ Customizing the Visual Cafe environment

About projects

Visual Cafe provides an easy-to-use yet sophisticated system for managing
the many files that make up a program. The files needed to create a Java
program are part of a Visual Cafe project. A project is an organized
collection of related files that are used to construct a Java program, which
can be an applet, application, JavaBeans component, or library. The
project is the core of the Visual Cafe development environment; it holds all
the elements of the program you’re developing. For example, in a project
could contain an animation applet, a word processing application, or the
Web pages and applets that make up an entire Web site. Projects provide

3-1

Chapter 3: Working with Projects
vital organization for your programs, particularly as they grow more
complex.

Within a project, you’ll set up an arrangement of windows called a
workspace. Because the various tools in Visual Cafe are displayed in many
individual windows, workspaces are used to group windows that have
related functions, such as editing or debugging. For more information
about workspaces, see “About workspaces” on page 3-18.

In a typical project there are source code files, class files, and
documentation files. A single project generally is used to create a single
target, such as the application or applet that Visual Cafe builds.

About the Project window

A project is the starting point of every Java applet and application created
in Visual Cafe. The Project window shows each item in a project. Visual
Cafe lets you choose among three ways to view your project:

◆ as a list of objects (and, optionally, HTML files)

◆ as a list of packages

◆ as a list of files

The Project window is divided into three views: Objects, Packages, and
Files. These views are represented by tabs at the bottom of the window. By
clicking on a tab, you can organize the information in the Project window
according to your needs. If you wish, you can remove a tab or change the
default tab. See “Changing the Project window’s tab display” on page 3-8
for information on modifying tabs.

Before you can construct an applet or application with Visual Cafe, you
need to create a new project, using one of Visual Cafe’s predefined project
templates (see “About project templates” on page 3-25 for information on
templates). Then the Project window opens with the project name in the
title bar.

When you first open Visual Cafe a new project is automatically created,
based on the default project template, AWT Applet. Each new project is
named “Untitled” until you save it with a name. If you’ve already created
some projects, you can set Visual Cafe to display the last project you
viewed when you open Visual Cafe (see“Creating a new project” on
page 3-36).
3-2

About the Project window
Here’s an example of a Project window, with the Objects view displayed:

You’ll notice that when you lessen the width of the Project window past a
certain point, the text no longer appears on the tabs, but the symbols do,
as shown here:

As in Windows Explorer, you can click the column header to sort by that
column. Clicking the column header again reverses the sort direction.
3-3

Chapter 3: Working with Projects
About the Project window’s views

This section describes the three views that are found in the Project
window: Objects, Files, and Packages.

The Objects view

When you click the Project window’s Objects tab, the Objects view
appears. In this view you see the components in your project and any
HTML files that you’ve added to the project. Java components are user
interface elements such as windows, menus, buttons, lists, and so on. For
information on components, see Chapter 7, “Working with Components.”

Here’s what the Objects view looks like:

Some components can contain other components, such as an application
window that contains a button. A component that contains other
components is called a container. In the Project window, the components
in a container appear subordinate to the container, like a file system
display that shows files subordinate to their folders. The containers at the
top level are separate Java files in your project (called Visual Cafe forms),
while the components in the containers are Java code within the container
Java file.
3-4

About the Project window
All Visual Cafe components are organized in the Visual Cafe Component
Library. You can use the Component Palette to display your most
frequently used components. For more information, see Chapter 7,
“Working with Components.”

The Objects view is the view many people use most often during program
development. With it, you can keep track of the components your project
contains, as well as open a variety of editors. In addition, one way to add a
standard Java component or a Visual Cafe component to your project is to
drag it from the Component Palette to the Project window. When you do
so, an instance of the component class called an object appears. See
“Viewing the components and HTML files in a project” on page 3-48,
“Opening editors from the Project window” on page 3-10 and “About files
in a project” on page 3-42 for more information.

The Files view

When you click the Project window’s Files tab, the Files view appears. The
Files view lists all the files in your project. At the top level are the files for
the top-level components in your project, as well as any HTML files or
other files you’ve added.

Click Name, Folder, Type, Modified, RAD Codegen Status, or Make Status to
sort by that attribute. Click again to reverse the sort order. If you do not see
all the headings, resize the Project window. See “Using files in a project”
on page 3-42 for more information.

You can also turn RAD on or off for a file. For more information, see
“Enabling and disabling RAD and automatic code generation” on
page 4-45.
3-5

Chapter 3: Working with Projects
Subprojects are visible in the Files view, but are not expandable. To open a
subproject, double-click the project icon to open it in a separate Project
window. You can double-click a file to open it in the Source window.

The Files view’s Imports folder contains all the Java source files for the
packages your project uses. Whereas in the Packages view the files are
listed by package, in the Imports folder the files are listed alphabetically.
Imports can be shown or hidden.

The Packages view

A Java package is a group of related classes that can be used by programs
that import the package or any file in the package. A package is similar to
a C library. The Project window’s Packages view lists the Java source files
in your project, grouped as Java packages. The Packages view always
shows the standard Java packages that Java programs require. It can also
display Symantec Visual Cafe packages and packages you add, including
your own packages or third-party packages.

Java source code is organized into packages. Each part of a package name
generally refers to a hierarchical directory structure. For example,
COM.sun.java.swing is in the directory structure /com/sun/java/
swing . If you’re going to distribute your packages, you should create a
globally unique name based on an Internet domain name. For example,
sun.COM is specified as COM.Sun. This first part of the name is in
uppercase letters; if the first part isn’t in uppercase letters, it’s for local use,
except for packages that are part of the Java language and system (which
start with java). Packages help prevent naming conflicts. For example,
two Java files could have the same names, but as long as they’re in
different packages, there’s no naming conflict.

When you add items to a project, a default package that contains the Java
files for those objects appears. If you add a Visual Cafe component, the
Symantec package also appears in the Packages view; it contains the Java
source file for each Visual Cafe component you include (specifically, it
contains the source code for the component class that your project object is
based on).
3-6

About the Project window
The Packages view looks like this:

You can expand and collapse your view of a package as you would for a
hierarchy of folders and files in Windows.

In the Packages view, you can drag and drop files between packages, drag
files from a file source — Windows Explorer, for example — and add them
to a project, and drag files to the Recycle Bin to remove them from a
project. Any of these actions can be undone.

You can also make other packages available to Visual Cafe projects by
adding them to the Visual Cafe class path. Then if you add a Java import
statement or use part of the new package in your Java source code, the
package appears in the Packages view. For example, you could add third-
party or your own packages containing components or utilities. You can
set the class path for a project or for the Visual Cafe environment. For more
information, see “Specifying source-file search paths for a project” on
page 3-62, “Working with components in a project” on page 3-48, and
“About the system path” on page 3-14.
3-7

Chapter 3: Working with Projects
Note: Classes that have not been added to a package display under the
default package. Only source files that you’ve added to the project are
listed.

The Packages view shows resource files, not just Java classes. You can
change the package of a resource file by dragging and dropping in the
package view. When Visual Cafe builds your project, the resource file is
copied into its corresponding location on disk, or into the JAR archive.

Note: Remember to keep the directory structure of your package intact,
and make sure that your file names use the same upper- and lower-case
letters, exactly as they were before copying the package.

If you declare your application or applet as a part of another package, you
must specify the output folder in the Package Destination line of the
Directories tab in the Project options window. See “In this section you’ll
learn how to set some common project options in the Project Options
dialog box. The following topics are discussed:” on page 3-58.

Changing the Project window’s tab display

You can enable or disable a Project window tab (Files, Objects, or
Packages), and you can also set which tab appears by default when you
open the Project window.

To enable or disable a Project window tab:

1 Right-click a tab in the Project window.

Available tabs are Files, Objects, and Packages.

A pop-up menu appears.

2 Choose the name of the tab you want to enable or disable.

A checkmark indicates that the tab is enabled.

To make a Project window tab the default tab:

1 Right-click a tab in the Project window.

Available tabs are Files, Objects, and Packages.

A pop-up menu appears.
3-8

About the Project window
2 For the tab you want to make the default tab, choose either Make
Objects Default, Make Packages Default, or Make Files Default.

The Project window tab you selected will now be the default view for all
projects.

Dragging and dropping into the Project window

You can use standard graphical user interface (GUI) techniques for
dragging and dropping components and files into the Objects view of the
Project window.

When you’re copying or moving components, if a box appears around a
container in the Project window the component is inserted in the container.
If a line appears under a component, the new component appears after the
component that’s underlined. A plus sign (+) appears over the cursor when
a copy operation is being performed.

Containers are placed at the top level or in another container, depending
on where you drag the component or on the characteristics of the
component. Containers at the top level mean a new .java file is added to
your project; components added to a container mean that code is
generated in the .java file for the top-level container.

Visual Cafe does not allow inappropriate copies and moves, such as
dropping a component into a container when that component must be at
the top level, or trying to move a component when files are in use.

Drag from… Into… Result…

Component Library
or Palette

Project window Copies the component to the new project (in
other words, instantiates the component).

Project window Same Project window Moves the location of the item. Alternatively,
you can press CTRL and drag an item to
copy it. For example, you can move a
component to another container or copy a
component within the same container. You
can also reorder the components in the
Project window list, which affects how
components overlap on a form (the z-order),
the tab order, and the order they are
declared in the Java code.
3-9

Chapter 3: Working with Projects
Opening editors from the Project window

The Project window helps you to quickly edit the items in a project. To
access other editor windows from the Project window:

Components and menus are displayed in the Objects view.

Java files are displayed in the Packages and Files views.

HTML files are displayed in the Objects and Files views. If you’ve installed
Visual Page from the Visual Cafe CD, double-clicking an HTML file in the
Object view launches Visual Page.

Project window Different Project window Copies the file or component to the new
project.

Form Designer Project window Within the same project, moves the location
of the component; or press CTRL and drag
to copy a component. When dragging to a
different project, copies the component.

Menu Designer Project window Within the same project, moves the location
of the menu item; or press CTRL and drag to
copy a menu item.When dragging to a
different project, copies the menu item.

Windows Explorer or
other file system
window

Project window Adds the file to the project. (However, it
does not copy the file to the project folder.)

Double-click… To get this editor…

A component Form Designer

A menu Menu Designer

A Java or HTML file Source window

An item in the Form
Designer

Source window

Drag from… Into… Result…
3-10

About the contents of a project
About the contents of a project

Visual Cafe creates several files that contain information about your project
and stores them in the project folder:

These files aren’t needed for deployment. The name of the file with the
.vep extension displays in the title bar of the Project window; the rest of
the project-related files don’t appear in the Project window.

Visual Cafe can also create files with the following extensions and stores
them in the project folder:

The only way an HTML file will appear in the Project window is if you
manually add it. You can add HTML files to the project as a helpful
organizational tool, but it’s not required that you do so. See “Adding an

File extension Description

.vpj The Visual Cafe project file

.vep A Visual Cafe file that contains project options and a list of files
in the project

.ve2 A Visual Cafe file that contains secondary project information

.cdb A compiled database that Visual Cafe uses to track compilation
dependencies (created after compilation)

File extension Description

.java A Java source file, such as for an applet

.class A compiled version of a Java source file

.obj An intermediate file produced when you compile a Java source
file to create a native Win32 application or DLL (not available
in Visual Cafe Standard Edition)

.lib A library file used with native Win32 applications and DLLs
(not available in Visual Cafe Standard Edition)

.html An HTML file

.properties A text file containing properties for localized code (resource
bundle)
3-11

Chapter 3: Working with Projects
existing file to a project” on page 3-44 and “About HTML files in Visual
Cafe” on page 3-50 for more information.

You can double-click a Java or HTML file in the Project window to open
that file in a Visual Cafe editor. If you’ve installed Symantec Visual Page,
HTML files will display in the Visual Page HTML editor. For more
information about opening files from the Project window, see “Opening
editors from the Project window” on page 3-10.

When you’re ready to deploy your program, you can use Visual Cafe’s
automatic deployment features to compile and deploy your files. This way
you can include everything that’s a part of your project, including HTML
files, PostScript files, graphics files, Adobe Acrobat PDF files, or any other
file. You can also choose to generate a list of properties to use with
localization. For more information on localization, see Chapter 13,
“Localizing Your Java Programs.” If you deploy your files by yourself, then
you’ll need to compile them first. For more information on deployment,
see Chapter 5, “Compiling and Deploying Your Project.”

Source files

Visual Cafe can process Java (.java), class (.class), properties
(.properties), and documentation files. Java, properties, and
documentation files are text files.

The Java source files and compiled Java files have the same file names but
different extensions. You see only the .java files in the Project window,
because they are used for development, while .class and
.properties files are used for deployment.

Additional projects

Visual Cafe allows a project to contain another project. Including other
projects lets you group sets of related project items and access all included
projects’ items within Visual Cafe. Included projects are built when the
project containing them is built. Thus, you can develop a suite of
applications by having one project for each application and one additional
project that includes all the individual projects; the entire suite of
applications can then be built with one command.
3-12

Organizing files and folders
Documentation files

You can add documentation files to your project to make them readily
accessible during development. ReadMe files and Javadoc-generated HTML
files are ways to document your program. Because the documentation files
are included in the project, you can read or modify them at any time.
These files are for your reference only; they will neither be included in the
final target nor be involved in any way with building.

If you use the AutoJAR command (from the Project menu), the HTML files
will end up in the JAR file as well.

Documentation files need to be saved as text files.

For more information about documenting your program, see “About
Javadoc” on page 4-59.

Organizing files and folders

The central element of a project is the project file. The project file
contains all the information you need to manage the project, such as the
locations of items in the project, as well as additional information such as
compiler options and browser data.

In general, most of the contents specific to a project, together with the
project file, are kept in a folder called the project folder. However, project
contents don’t all have to reside in the project folder. In addition, a project
may include items that are located in the project folder of another project;
this arrangement allows projects to share code.

When you organize a target’s files as a project, Visual Cafe can assume full
management responsibility. In contrast to traditional “make” systems, this
strategy frees you from the bookkeeping involved in accessing the contents
of a project and building the target. Because Visual Cafe keeps track of all
project contents, the features of Visual Cafe are smoothly integrated. For
example, if an error occurs during compilation, you can click to open a
Source window that contains the source code, with the questionable line of
code highlighted.

Also, Visual Cafe automatically determines those items in a project that
need to be rebuilt following changes to any project contents.
3-13

Chapter 3: Working with Projects
Installing Visual Cafe establishes a specific folder-organization plan. This
plan is set up to allow Visual Cafe to quickly and unambiguously locate
your project’s contents.

The first time you save a project, the files it contains are stored in the folder
you specify. For efficient project management, you should store all the files
of a given project in a single folder dedicated to that project, usually
referred to as the project folder. Doing so will make deploying your
applets, applications, and Web pages much easier.

Here’s an example of a project folder’s contents:

The Java and Symantec packages are automatically available during the
development process. These files are not added to your project when you
save it the first time; there are a number of ways you can make imports
from these packages available to your applets and applications during
deployment.

For more information on deployment, see “Deploying your applet” on
page 5-32.

Visual Cafe looks for your project’s items in the folders of two paths, the
system path and the project path.

About the system path

Components that will be used in many projects should be placed in folders
in the system path. In the folder where Visual Cafe is installed, there is a
3-14

About multiple projects and subprojects
Java Libraries folder. Within that folder, there is a classes folder.
The default system path is the classes folder along with all its
subfolders.

About the project path

Components that are specific to a particular project belong in its project
path. The project folder (the folder that contains the project file), along
with all subfolders it contains, is the default project path. You can add
paths to the project path, as well as modify the project path, by using the
Search Directories option from the Project Options dialog box. For more
information, see “Specifying source-file search paths for a project” on
page 3-62 and “Working with components in a project” on page 3-48.

Typically, a project file resides in a project folder along with all files
specific to that project. The folder may also contain subfolders. Setting up
your project contents in this way helps reduce the time it takes Visual Cafe
to search for files, and reduces the likelihood of confusion due to duplicate
file names. You can expect to have many project folders.

When you first add a file to a project, Visual Cafe notes the tree (folder
hierarchy) to which the file belongs. Thus, you can move files in and out of
folders and create and rename folders without having to tell Visual Cafe
exactly where the files are located. If you move files later on, Visual Cafe
first looks in this tree.

About multiple projects and subprojects

In some cases you’ll want to work on more than one project at once.
Visual Cafe allows you to work on multiple projects, and helps you keep
track of the files they contain.

About multiple projects

Visual Cafe allows you to have multiple projects open at the same time.
You can switch between projects by selecting an item from a list in the
Windows menu that shows currently open windows and the projects
they’re associated with. The File menu contains a list of recently opened
3-15

Chapter 3: Working with Projects
projects (which aren’t currently open); you can choose from this list to
quickly open a recent project.

When working with several projects at the same time, it’s important to
know which project will be affected by project-related commands you
might choose. Visual Cafe applies the following rules to determine the
project that will be affected:

◆ If the frontmost window is a Project window, the command affects the
project the window belongs to.

◆ If the frontmost window is not a Project window, the command affects
the project that was active when this window was opened.

Viewing active projects

The active project’s name is displayed in the Visual Cafe title bar. The Class
Browser is also project-dependent. If you have a Class Browser open for
each open project, you can identify which project is active by looking at
the Visual Cafe title bar for each Class Browser window you select.

This feature is helpful when viewing .java files. For example, if you open
two or more .java files that are in two or more different projects, look at
the Visual Cafe title bar to see which project is associated with them. Being
able to tell which .java file belongs to which project is helpful when
debugging, for example, because when you set breakpoints they’re
associated with that project.

About subprojects

Visual Cafe lets you add subprojects to a project. A subproject is a project
that is a part of another project. When you compile the parent project, the
subproject gets compiled and saved as well. When you run a project that
has subprojects, only the parent project is run. To run and debug a
subproject, you need to open the project in its own Project window.

You add subprojects to a project by using the Project Files dialog box (see
the next section for details). You choose the project file type and then
select a project file and add it. Subprojects appear only in the Files view of
the Project window.
3-16

About multiple projects and subprojects
Note: There is currently no particular order in which subprojects are
compiled, although they are compiled every time the parent project is.

Using subprojects

To add a subproject to a project, follow the steps below to add the .vep
file of another project to the current project. Also see “Opening an existing
project” on page 3-37 and “Adding an existing file to a project” on
page 3-44.

A quick and easy way to add a subproject to a project is to drag a project’s
.vep file into the Project window (Files view); and the project you
dragged becomes a subproject of the target.

You can also add subprojects by means of the Project Files dialog box.

To add a subproject to a project:

1 Open the project you want to add a subproject to.

2 From the Insert menu, choose Files Into Project.

The Project Files dialog box appears.

3 Navigate to the desired project folder.

4 Make sure Project files (*.vep) is shown in the Files of type field.

The available projects display.

5 Select a project.

This project will become a subproject of the one selected in step 1.

6 Click Add.

The project is now a subproject of the current project.

7 Click OK.
3-17

Chapter 3: Working with Projects
The project you added becomes a subproject of the parent project. It
appears in the Files view of the Project window.

Subprojects can’t be expanded in any of the Project window views to show
the visual elements within the subproject. Double-clicking the subproject
object opens the project in its own Project window.

About workspaces

The various tools in Visual Cafe are displayed in many individual windows;
workspaces let you group the windows that have related functions. For
example, when you’re editing source code you might use a workspace that
displays the Source window, the Messages window, and the Project
window. When you’re debugging your program, you might use another
workspace that opens windows for the different debugging tools.

Workspaces are task-oriented as opposed to project-oriented. You create
workspaces for different tasks, such as designing, editing, or debugging.
You can then access the workspaces from the Workspace toolbar or from
the Window menu under Workspaces:

Visual Cafe supplies you with two built-in workspaces: Edit and Debug.
The Edit workspace automatically loads when you’re creating or editing
your program, and opens windows such as the Form Designer, Property
List, and Project window.You can also manually open the Source window
and other windows from within the Edit workspace. The Debug workspace
automatically loads when you run your application, and opens the
3-18

Using workspaces
necessary debugging windows. When the debugging process ends, the
development environment returns to the Edit workspace.

You can create, delete, or rename workspaces. Only global-view windows
are saved in a workspace.

Workspaces can be loaded automatically when you run a project and when
you stop the project. Workspaces are saved dynamically. For example, if
the Property List window is open in the Edit workspace and you close that
window while in the Edit workspace, the change is saved permanently.
This feature ensures that as you run and stop your program, the window
state remains as you last left it.

You can create, delete, and rename a workspace by using the Workspaces
menu option in the Window menu. Visual Cafe automatically saves changes
to a workspace configuration when you exit the workspace.

About dockable windows in a workspace

You can now choose to use the Multiple Document Interface (MDI) for
your development environment. This allows you to dock and undock some
windows. For more information, see the following section, “Working with
the MDI window system.”

Using workspaces

You can choose options on how to use the MDI system, or how to
customize other aspects of your workspace. In this section you’ll learn how
to dock and otherwise organize windows in a workspace.

Working with the MDI window system

You can customize your workspace even further by retaining your window
preferences between Edit and Debug development modes. You can control
your workspace by docking or undocking windows and by using the
Workspace and Workbook tabs (a Workbook is a Windows user-interface
item that displays files on a row of tabs for easy access). Docking a
window makes the window stay against the edge of the Workspace area. If
you like to have different windows open and vary their locations
depending on what development mode you’re working in, you can keep
3-19

Chapter 3: Working with Projects
these preferences, even after closing a project or Visual Cafe. For each
project, you can retain your settings for the Project, Source, Class Browser,
and Hierarchy Editor windows.

These options are available to you when you are in Multiple Document
Interface (MDI) mode. If you do not turn MDI on, your workspace will
look the same as it did in versions of Visual Cafe prior to version 2.5.

While using MDI, you work with regular windows, which appear in the
workspace area, and dockable windows, which can be docked along the
edges of your Visual Cafe workspace or can be floating in the workspace
area.

When using MDI mode, some window positions are saved with the
workspace and the project. For more information on setting your
workspace options, see “Modifying workspaces” on page 3-23.

When you’re using MDI, you can do the following:

◆ Turn Docking View on or off for a dockable window

◆ Dock a window floating in the workspace area

◆ Change the size of a docked window

◆ Prevent a dockable window from docking while dragging it

◆ Expand or collapse a docked window

◆ Organize the placement of windows in the workspace area

◆ Toggle the display of Workbook tabs

◆ Activate a window in the workspace area

◆ Toggle the display of the status bar

These tasks are discussed in this section.

To enable MDI:

1 From the Tools menu, choose Environment Options, then click the
General tab in the Environment Options dialog box.

2 Select MDI Development Environment to enable MDI, or deselect it to
turn MDI off.

The workspace area contains non-dockable windows, such as the Form
Designer and the Source window, and dockable windows. These dockable
windows can have Docking View enabled or disabled. Non-dockable
3-20

Using workspaces
windows appear in the workspace area; dockable windows can be docked
along the edges of your Visual Cafe workspace or can float in the
workspace area. The windows that are dockable are:

◆ Breakpoints

◆ Call Stack

◆ Component Library

◆ Find in Files results

◆ Messages

◆ Project

◆ Property List

◆ Threads

◆ Variables

◆ Watch

Note: Docked windows have the same highlight color in the title bar as a
non-dockable window that is selected. To ensure that a docked window is
the active window, click it.

Tip: If you have maximized a non-dockable window, such as the Source
window, you can restore it to its previous size by clicking the innermost
Restore button.

To turn Docking View on or off for a dockable window:

◆ Do either of the following:

❖ Right-click and select Docking View from the pop-up menu.

or

❖ Activate the window, then choose Docking View from the Window
menu.

When you dock a window that you’ve docked before, the window will
dock to its previous size and location, unless you’ve turned toggling on
and off in between docking it.
3-21

Chapter 3: Working with Projects
To dock a window that’s floating in the workspace area:

◆ Do either of the following:

❖ While Docking View is enabled, drag the window to the edge
of the workspace.

or

❖ Double-click the title bar of the window.

A docked window takes up an entire side of the workspace, unless another
window is docked along the same side.

To undock a window:

◆ Do any of the following:

❖ Double-click the title bar.

❖ Drag the window into the workspace area.

❖ Activate the window, then choose Docking View from the
Window menu.

To change the size of a docked window:

◆ Move the cursor over the edge of the window until the cursor
changes to a sizing cursor, then click and drag to the desired size.
You can drag the edge that’s facing the center of the main
window.

To prevent a dockable window from docking while dragging it:

◆ Press CTRL while dragging the window.

To expand or collapse a docked window:

If you have more than one window docked along an edge, you can
expand or collapse one of the windows by clicking the triangle
button in the corner of the window.

Expanding and collapsing windows along an edge will resize the
windows so that they all use equal amounts of space.

To organize the placement of windows in the workspace area:

◆ From the Window menu, choose either Cascade, Tile Horizontally, or
Tile Vertically. You can also drag the windows within the
workspace.
3-22

Using workspaces
This works only for undocked or undockable windows, such as the
Form Designer.

At the bottom of the workspace area, you can display Workbook tabs —
one for each open window (either non-dockable windows or dockable
windows with Docking View disabled). An example is shown here:

Clicking a tab activates that window in the workspace area.

To toggle the display of Workbook tabs:

1 Choose Workbook from the View menu.

The workbook tabs display.

2 Choose Workbook again to hide the workbook tabs.

To activate a window in the workspace area:

◆ Choose the window from the Window menu. You can also click the
window, click a Workbook tab, or choose Next or Previous from
the Window menu.

To toggle the display of the status bar:

◆ Choose Status Bar from the View menu.

Modifying workspaces

You can create, delete, and rename a workspace by using the Workspaces
menu option. Visual Cafe automatically saves changes to a workspace
configuration when you exit the workspace.

To change to a different workspace:

◆ Use either of these methods:

❖ From the Window menu, choose Workspaces, then choose one
of the workspace names displayed in the submenu.

❖ From the Workspace toolbar, select the appropriate workspace
name.
3-23

Chapter 3: Working with Projects
To save your current window arrangement as a new workspace:

1 Configure the screen as you like by opening the windows you
need and positioning and sizing them to suit your requirements.

2 From the Window menu, choose Workspaces, then choose New.

3 In the New Workspace dialog box, type a new name.

4 Click OK.

Visual Cafe creates a new workspace and displays it in the toolbar’s
Workspace field. The workspace is also added to the Workspace list in the
Window menu.

To rename a workspace:

1 From the Window menu, choose Workspaces, then choose Rename
from the submenu.

2 In the Rename Workspace dialog box, type a new name.

3 Click OK.

Visual Cafe changes the workspace name and displays it in the toolbar’s
Workspace drop-down list box.

To delete a workspace:

◆ From the Window menu, choose Workspaces, then choose Delete
from the submenu.

The workspace is deleted and the next workspace in the listing is
activated.

Caution: Deleting a workspace immediately deletes the workspace named
in the toolbar’s Workspace drop-down list box.

You cannot delete the last remaining workspace.

Controlling toolbar position and visibility

Visual Cafe’s toolbars are at the top of the Visual Cafe main window. You
can control toolbar position and visibility.

To float a toolbar:

1 Drag the toolbar from the top of the Visual Cafe window onto your
desktop.
3-24

About project templates
2 Double-click somewhere in the toolbar’s background.

To dock a toolbar:

1 Drag the toolbar to the top of the Visual Cafe window.

2 Double-click somewhere in the toolbar’s background.

To hide or show a toolbar:

◆ Do either of the following:

❖ Right-click at the top of the Visual Cafe window and select the
toolbar’s name. Select the toolbar’s name to show the toolbar,
or deselect it to hide it.

❖ If the toolbar is undocked, click the close box on the toolbar to
hide it.

About project templates

This section describes how to use project types, and the templates that are
contained in each, when creating a project. It discusses the different project
types and how to create projects based on them.

This section assumes you’ve already installed Visual Cafe. Before working
with Visual Cafe, you should create a common folder to contain your
project folders. You can name this common folder anything you like, such
as My Projects , and you can place it anywhere you like as long as it’s
outside the system path. See “About the system path” on page 3-14 and
“About the project path” on page 3-15 for more information.

You might also want to create custom templates for the different applets
and applications you develop. A template is a project that contains files
and components you frequently use. For example, if you commonly create
a certain kind of applet that resides in an HTML file that’s formatted a
certain way, you could create this type of generic project and save it as a
project template. Then, when you create a new project you can speed your
development process by starting with your custom project template. See
“Creating a project template” on page 3-28 for more information.

If you don’t need to create an entire custom project, but would like to
create a custom component, see “Adding a component to a project” on
page 3-49.
3-25

Chapter 3: Working with Projects
Using project templates

When you create a new project, you specify a project template as the
starting point. Project templates determine those project items that are to
be initially added to a project and those configuration options that are to
be initially provided. Using project templates reduces the amount of
overhead involved in creating projects. You can also create your own
project types, as described in “Creating a project template” on page 3-28.

You can choose from a variety of built-in project templates, depending on
which Visual Cafe edition you’re using.

Note: Some of the project templates shown are not available in the Visual
Cafe Standard Edition.

The following project templates are available:

Project type Description

AWT Applet A project that contains a single applet and uses the AWT
component model. The Applet container is a type of panel
component that’s designed to appear in an HTML file (such as
a Web page) viewed in a Web browser.
3-26

Using project templates
AWT Application A project that contains a frame (with an Open File dialog and
menu bar), an About dialog (with a label and a Done button),
and an Exit dialog (with a label and a Yes and a No button).
This type of application uses the AWT component model.

The Frame container is a special kind of window; this one has
been set up as a main application window. In this template, it
contains a menu bar and an Open File dialog box, which is a
standard Java component. The About and Quit dialog boxes
are Visual Cafe components that you can customize like
templates; they’re tied to the About and Exit menu items.

JFC Applet A project that contains a JFC/Swing JApplet component.

JFC Application A project that contains a JFC/Swing JFrame component, which
contains JPanel , JToolbar , and JMenubar components.
Several actions are provided to help you get started. The Open
menu item opens an Open File dialog box, the Exit menu item
opens an Exit dialog box, and the About menu item opens an
About dialog box.

JavaBean Wizard A wizard that helps you create a basic Bean. This template
contains the files you need to get started in building and
deploying Beans. The JavaBean Wizard creates two files;
beanclassBeanInfo.java and beanclass.java , where
beanclass is the name of your Bean. For more information,
see “Using the JavaBean Wizard” on page 10-12.

Servlet A wizard that helps you create a servlet. A servlet works like an
applet, but from a server. To run the servlet from Visual Cafe,
you can specify various parameters. For more information, see
“Specifying execution settings for a servlet” on page 3-33.

Win32 AWT
Application

The same as an AWT application, except that the project
options are set up to produce a native Win32 executable.

Win32 Console
Application

A simple console application that you can use as a starting
point. The project options are set up for you. This template has
no GUI features, but instead uses a console.

Win32 Dynamic
Link Library

A simple DLL you can use as a starting point. The project
options are set up for a DLL. This template specifies that the
program is a native DLL.

Empty project A project with no components.

Project type Description
3-27

Chapter 3: Working with Projects
If you’re using the Visual Cafe Database Edition, you can choose from
some additional project templates. See the Visual Cafe Database
Developer’s Guide for more information.

You can also create your own project templates. See “About files in a
project” on page 3-42 for more information.

When you’re working with project templates, see the following topics in
this section for step-by-step instructions:

◆ Setting a new default template

◆ Creating a project template

◆ Deleting a project template

Setting a new default template

You can select a template to use as the default for all new projects.

To set a default template:

1 From the File menu, choose New Project.

The current default template is highlighted and an asterisk is placed
next to the template name.

2 Select a template.

3 Click Set Default.

4 Click OK.

A new project is created based on the selected template. This template will
be used for subsequent new projects until you change the default.

Creating a project template

You use project templates as the basis for new projects. When you create a
project from a template, the project initially contains the files and
components in the template. Visual Cafe provides a number of built-in
templates, as described earlier in this chapter. You can also create your
own templates as the starting point for new projects.
3-28

Using project templates
Important: When you save a project as a template, make sure all your
source files (both .java and .html) are in the same project folder or a
subordinate folder.

To create a project template:

1 Create a project to be used as the template. Add any source code
files that you need.

2 With the current project in a Project window, then choose Create
Project Template from the Project menu.

The Create Project Template dialog box appears.

3 Select the group that you want the template to belong to in the
Component Library.

If you do not select a group, the template is added to the Project
Templates group.

4 Type a name and description for the template in the appropriate
fields.

The name and description is displayed for the template in the New
Project dialog box. The description appears when the template is
listed in the Component Library window.

5 Click OK.

Visual Cafe makes a copy of the project and stores it as a project template.
The template is now available from the New Project dialog box.

Deleting a project template

The project templates that ship with Visual Cafe cannot be deleted. You
can delete a project template that you have created, as long as it is not the
current default template. After you delete your custom project template, it
no longer appears in the New Project dialog box.

To delete a project template:

1 Open the Component Library.

2 Display the contents of the Project Templates folder.

3 Select the template from the template list.

4 Press DELETE.
3-29

Chapter 3: Working with Projects
The project template is deleted from Visual Cafe.

Creating a servlet

Visual Cafe provides a wizard that helps you create a servlet using the Java
Servlet API.

It is recommended that you download the Java Servlet Development Kit
from www.javasoft.com for the most complete information about
developing servlets.

To create a servlet with the Servlet project template wizard:

1 From the File menu, choose New Project.

2 Select Servlet and click OK.

3 If you receive the Introduction page, select Don’t Show This Page In
the Future if you do not want to access this page again. Then click
Next.

4 Type a servlet name, and optionally a package and description.
Then click Next.

The servlet name is the name the Java class file will have. The
description is the string returned from the getServletInfo
method. Typically, this is a string containing information about the
servlet, such as its author, version, and copyright.

Tip: After specifying a name, you can click Finish in any page to
use the default settings for the servlet.

5 Select the type of servlet you want to create. Then click Next.

The HTTP servlet extends javax.servlet.http.HttpServlet ,
the Generic servlet extends javax.servlet.GenericServlet ,
and the custom servlet implements the javax.servlet.Servlet
interface and extends from java.lang.Object . The HTTP servlet
implements this protocol; if you want to use another protocol, you
should create a servlet of one of the other types. The custom servlet
type can extend any class you want it to.

Normally, when extending the functionality of a Web server, you
would write an HTTP servlet. If you are providing functionality for
another Internet protocol, such as FTP, you would use
GenericServlet .
3-30

Using project templates
You need to directly implement the Servlet interface only if your
servlets cannot (or you choose not to) inherit from
GenericServlet or HttpServlet . For example, RMI or CORBA
objects that act as servlets will directly implement this interface.

6 Select whether you want the servlet to handle multiple client
requests. Then click Next.

If you select Yes, the service methods of the servlet can be
multithreaded. If you select No, the servlet implements the
SingleThreadModel interface, which will cause a new instance of
your servlet to be created to service each new service request; this
uses more memory.

Servlets typically run inside multithreaded servers; servlets must be
written to handle multiple service requests simultaneously. It’s your
responsibility to synchronize access to any shared resources. These
resources include in-memory data, such as instance or class variables
of the servlet, as well as external components, such as files,
databases, and network connections.

If you do not want your service methods to handle multiple service
requests concurrently, you must implement the
SingleThreadModel interface.

7 If you chose the HTTP or Generic types, select the methods you
want to implement. Then click Next.

You can implement these methods:

❖ init — Initializes the servlet and logs the initialization in the
server log file. You might provide an implementation for this
method if you are doing any expensive one-time setup, such as
loading configuration data from files or starting helper threads.

❖ destroy — Destroys the servlet, cleans up resources, and logs
the destruction in the servlet log file. You might provide an
implementation for this method if you are undoing any
initialization work or perhaps synchronizing persistent state
with the current in-memory state.

❖ service — Carries out a request from a client. This method is
rarely overridden in HTTP servlets. In an HTTP servlet, standard
HTTP requests are supported by dispatching to Java methods
specialized to implement them, such as doGet and doPost .

You might want to implement the lifecycle methods init and
destroy if you need to manage resources that are held for the
lifetime of the servlet. Servlets that do not manage resources do not
need to specialize these methods.
3-31

Chapter 3: Working with Projects
The following methods apply only to the HTTP type:

❖ doGet — Handles the HTTP GET operation.

❖ doPost — Handles the HTTP POST operation.

❖ doPut — Handles the HTTP PUT operation, which is like
sending a file through FTP.

❖ doDelete — Handles the HTTP DELETE operation, which
lets a client request that a URL be removed from the server.

8 If you chose the HTTP types, select whether you want your HTTP
request methods to generate HTML pages. Then click Next.

If you select Yes, Visual Cafe generates the code for responding with
an HTML page, along with a skeleton HTML page you can modify.

9 If you want to add parameters, click Add, then double-click in a
field to make it editable. If you want to generate get/set methods
for your initialization parameters, select this option. Then click
Next.

Some servers allow an administrator to display and change the value
of initialization parameters through get/set parameters. There are two
types of parameters you can have your servlet handle:

❖ Initialization parameters — These are handled in the init
method of the servlet. They are specified in server-specific ways
(typically in a properties file or perhaps through a tool provided
by the server). Typically, they provide some sort of
configuration information to the servlet, for example, the name
of a file to read or the name of a directory to write to. The
init method of the servlet retrieves the parameter through the
ServletConfig interface, which is passed to the init
method by the server as an argument.

❖ Service Request parameters — These are handled in any of the
service methods of the servlet. They are name/value parameters
passed to the servlet with an individual service request; for
example, a GET request might pass a series of parameters, such
as keywords to search for if the GET is handling requests of a
search-engine type servlet.

10 In the summary page, check your selections. Click Back to change
any information. Click Finish when the page displays what you
want.

A new project is created with your servlet class in it.

You can run and debug the servlet from the Visual Cafe environment;
see the next section for more information on setting your project
3-32

Using project templates
options. Visual Cafe uses the ServletRunner (a very lightweight
Web server) to run the servlet locally, and starts your default Web
browser, which will generate the service request that is sent to the
servlet through the ServletRunner .

Specifying execution settings for a servlet

Visual Cafe lets you run and debug a servlet from its environment. For
more information on creating a servlet project, see the previous section.

To specify execution settings for a servlet:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 In the Project Options dialog box, click the Project tab, and choose
a project type of Servlet.
3-33

Chapter 3: Working with Projects
4 Specify the options you want:

Field Description

Start with Web page Specify an HTML file in one of these ways:

Choose Automatic to run from an automatically
generated HTML file. This option opens the
browser and generates a GET request of the
servlet by specifying the servlet in the browser's
location field. For example, http://
127.0.0.1:8080/servlet/TestServlet
might be added to the browser’s location field,
which essentially means GET TestServlet
located at 127.0.0.1:8080/servlet/ , so an
HTTP GET service request is sent to the servlet.

Choose one of your own HTML files from the
pop-up menu. HTML files that you added to your
project automatically appear in the pop-up menu.

Click the browse button (…) for an HTML file.

Type in the field to specify a file name or a URL,
for example, http://
myserver.someplac.com/
somedirectory/some.htm . This would be a
good way of testing posting to a servlet. For
example, you might create an HTML page that
has a form that the page sends to the servlet (this
would be similar to sending the form to a CGI
script for processing). Then the servlet’s doPost
method would get called.

Servlet class The name of the class file.
3-34

Working with projects
5 Click OK.

The change takes effect the next time that you run your project.

Working with projects

When you’re working with projects in Visual Cafe, there are many tasks
that you can perform, such as:

ServletRunner arguments The multithreaded ServletRunner , intended
for testing, can run multiple servlets or one
servlet that calls other servlets to handle client
requests. It does not automatically reload servlets
when they are updated, but there is little
overload when stopping and starting the
ServletRunner to use a new servlet version. You
can specify the following arguments:

-p port — the port number to listen on

-b backlog — the listen backlog

-m max — maximum number of connection
handlers

-t timeout — connection timeout in milliseconds

-d dir — servlet directory

-r root — document root directory

-s filename — servlet property file name

-v — verbose output

Servlet arguments If your servlet takes initialization arguments,
supply them here or in a properties file. The
syntax of a single parameter is
parameterName=parameterValue. Parameters are
strung together with an ampersand (&) separating
each name/value pair. For example, the
arguments to a database servlet could look like
this:
username= fill_in_the_user&password= fill_in_
the_password&owner= fill_in_ the_name

Field Description
3-35

Chapter 3: Working with Projects
◆ Opening an existing project

◆ Saving a project

◆ Renaming a project

◆ Copying a project

◆ Deleting a project

◆ Opening items in a project

◆ Closing a project

◆ Opening editors from the Project window

These topics are discussed in the following sections.

If you want to work on an existing project that was created in Visual Cafe
version 2.0, you must migrate it to release 3.0 first. See “Migrating a project
from earlier versions of Visual Cafe” on page 3-38 for more information.

If you’re working with multiple projects, see “About files in a project” on
page 3-42. If you’re working with subprojects, see “About subprojects” on
page 3-16.

Creating a new project

In this section you’ll learn how to set up and work with a project. As soon
as you launch Visual Cafe, you can begin working on a new project.

To start Visual Cafe:

1 Open the Windows Start menu.

2 Click Programs, then choose Symantec Visual Cafe from the
submenu.

3 Select Visual Cafe. The Visual Cafe environment is displayed on
your desktop.

To create a new project:

1 From the File menu, choose New Project.

The New Project dialog box appears.

2 Select the project template you want to use as the basis for your
new project.
3-36

Working with projects
The default template is indicated by an asterisk. You can easily
change the default template by selecting another template and
clicking Set Default.

3 Click OK.

A new Project window opens with the selected template loaded. All
objects in the template are added to the project.

Note: Only one project appears in a Project window.

Opening an existing project

You can open an existing project by way of the File menu in Visual Cafe, or
a Windows file system window (such as Windows Explorer).

To open an existing project:

1 From the File menu, choose Open.

The Open dialog box appears.

2 Navigate to the project folder.

3 Make sure Visual Cafe Project is shown in the Files of type field.

The projects are displayed.

4 Select a project from the list.

5 Click Open.

The project opens with the last saved window configuration.

To open an existing project from Windows Explorer or another file
system window:

◆ Double-click the project file, which has the extension .vep .

Using older projects and files

If you’ve created programs in an older version of Visual Cafe and
would like to use them in the current version, you can open the old
files in version 3.0 and have Visual Cafe automatically update them.
3-37

Chapter 3: Working with Projects
Migrating a project from earlier versions of Visual Cafe

Visual Cafe version 3.0 project files (the .vep , .vpj , .ve2 , and .cdb
files) are not backward-compatible with Visual Cafe version 2.0 project
files. If you save a 2.0 project in the Visual Cafe 3.0 software, you cannot
convert the project back to 2.0. Therefore, you might want to copy your 2.0
project directories before opening them in the 3.0 software. That way you
will still have your 2.0 project files.

When you open a 2.0 project in Visual Cafe version 3.0, Visual Cafe
updates the files to use the new version of the components (specifically,
the INIT portion of the code). If you add a Visual Cafe version 2.0 Java file
without first opening its 2.0 project, the Java file will not be set up to use
the new Visual Cafe components. You should first open the 2.0 project in
the newer version of Visual Cafe so that the file is updated for you.

Note: If you create an applet using JDK 1.1, the Web browser must support
this version of the JDK or the applet will not run in the browser.

Migrating Java source files from JDK 1.0 to JDK 1.1

Visual Cafe offers a utility that automatically converts a Java source file
from the JDK 1.0 event model to the JDK 1.1 event model.

To migrate a project file to the JDK 1.1 event model:

1 Open the 1.0-based file in the Source window.

2 From the Tools menu, choose Migrate Event Bindings from 1.0 to 1.1.

Visual Cafe parses the handleEvent and action methods. From
these methods, new code is generated to handle the events in the
JDK 1.1 event model. This includes generating the required listeners
and adapters and registering the listeners. For menus with menu
items created as quoted literals, such as menu1.add("Open") , a
MenuItem object is created to support the new event model.

The comment tag //{{INIT_CONTROLS is generated by Visual Cafe
to mark the location where components are created and initialized.
The comment tag //{{REGISTER_LISTENERS marks the location
where listeners are registered.

3 Look over your code and make modifications as needed. For
example, you might have code that you need to move from the
handleEvent and action methods.
3-38

Working with projects
Saving a project

The first time you save a project, all the files it contains are saved to the
folder you specify. After you save a project once, Visual Cafe automatically
saves those files that change during the development of your project.

Note: Saving just the project saves the project files only, not other files
such as applets. Choose Save All from the File menu to save all files within a
project.

In this section you’ll learn how to save a project for the first time, save only
the project files, save all the files in a project, and save individual project
files. Visual Cafe also lets you customize your backup and save procedures
to save files for recovery in case of a system crash and make source-file
backups automatic. These environment options are discussed in “Setting
backup and save options” on page 3-83.

To save a project for the first time:

1 Activate the Project window, then choose Save from the File menu.
The Save dialog box appears.

The project and all the files it contains should be in the same folder.
For easier project management, you should save each project in its
own folder.

2 Select a folder and type a name in the Save As field.

The Visual Cafe project file must have the extension .vep . If you
type just the first part of the file name, Visual Cafe will add the .vep
extension for you.

3 Click Save. The new file name appears in the title bar.

To save project files only:

◆ Activate the Project window, then choose Save from the File menu.

Only the project file is saved, not related files such as applets.

To save all the files in a project:

◆ Activate the Project window, then choose Save All from the File
menu.

All files in the project are saved.
3-39

Chapter 3: Working with Projects
After you save a project once, you can save a single file in the project
separately from the project’s other files.

To save one file in a project:

1 Open the file in an editor and activate that window.

Remember that a top-level container in the Objects view is associated
with a Java source file.

2 From the File menu, choose Save.

The Save menu item is enabled only if there are changes to save.

Renaming a project

To rename a project, simply save it with a different name.

To save and rename a project:

1 Activate the Project window, then choose Save As from the File
menu.

The Save As dialog box appears.

2 Type the project name in the File name field, then click Save.

The Visual Cafe project file must have the extension .vep . If you
type just the first part of the file name, Visual Cafe will add the .vep
extension for you.

3 Using Windows tools, delete from the project folder the project
files that have the old name and the extensions.vep , .vpj , .ve2 ,
and .cdb (if present).

Copying a project

If you want to reuse a particular project, you can copy the project file and
other related files to a new location.

To copy a project:

1 If Visual Cafe is running, make sure that the Project window for
the project is closed.

Note: You can’t copy files while they are in use.
3-40

Working with projects
2 Do any of the following:

❖ In Windows, copy the files in the project and paste them in a
new folder, preserving the folder structure.

❖ Drag the files and drop them where you want to copy them.

❖ If all of your files are in one project folder, you can simply copy
the project folder, then rename it.

Deleting a project

If you no longer have a need for a particular project, you can delete it.

To delete a project:

1 If Visual Cafe is running, make sure that the Project window for
the project is closed.

Note: You can’t delete files while they are in use.

2 Do any of the following:

❖ From Windows, delete the project folder and all files in the
project (except imports).

❖ Click on the files you want to delete. The selected files will be
highlighted.

❖ Drag the files to the Recycle Bin, or press the DELETE key.

Opening items in a project

To open an item in a project and access its contents, double-click the item
in the Project window.

If the file for a project item is a text file, it’s displayed in an editor window.
If it’s a project file, the project is opened by Visual Cafe and its Project
window is displayed. If the item is a .class file, the source file displays.

For all project items, double-clicking is a shortcut for selecting the item and
choosing Open filename from the File menu.
3-41

Chapter 3: Working with Projects
Closing a project

When you close a project, all windows associated with the project close
(except the Property List, which clears).

To close the active project:

◆ With the Project window active, choose Close Project from the File
menu.

You’re prompted to save any unsaved changes. Visual Cafe remains
open so you can work on other projects.

To close all projects and exit Visual Cafe:

◆ Choose Exit from the File menu.

You’re prompted to save any unsaved changes. The Project and
Visual Cafe windows close.

About files in a project

The Java source files (.java) and compiled Java files (.class) have the
same file names, but different extensions. You see only the .java files in
the Project window, because they’re used for development, while .class
files are used for deployment.

Note: Visual Cafe lets you package .class files into .zip or .jar
archives to speed up downloading and conserve disk space.

For more information about files in projects, see “About the contents of a
project” on page 3-11. Also see the following section “Using files in a
project” and “Working with components in a project” on page 3-48.

Using files in a project

The Files view lists all the files your project contains, except for the project
management files (.vep , .vpj , .ve2 , and .cdb files). At the top level are
the files for the components in your project, as well as any HTML files
3-42

Using files in a project
you’ve added. (For more information about the Files view, see “The Files
view” on page 3-5.)

In the Imports folder are all the Java source files for the packages your
project uses. Whereas in the Packages view the files are listed by package
(see “The Packages view” on page 3-6), in the Imports folder the files are
listed alphabetically.

You can sort in the Files view by clicking a heading button, and you can
also turn RAD (and the resulting automatic code generation) on and off for
a file. For more information, see “Enabling and disabling RAD and
automatic code generation” on page 4-45.

HTML files are also listed in the Objects view (see “Viewing the
components and HTML files in a project” on page 3-48).

Note: If a file with the extension .java appears, the corresponding
.class file is not listed, because you’re interested only in .java files
during development.

When working with individual files, see these related tasks in this section
for more information:

◆ Adding a new file to a project

◆ Adding an existing file to a project

◆ Deleting a file from a project

◆ Copying a file in a project

◆ Sharing files among projects

Adding a new file to a project

Visual Cafe lets you create a new text file from within its environment. You
can add HTML code to create HTML files and Java code to create Java
source code files; you can then add these files to your project.

To add a new file to a project:

1 From the File menu, choose New, then choose File from the
submenu.

An empty Source window opens.
3-43

Chapter 3: Working with Projects
2 From the File menu, choose Save As.

3 In the Save As dialog box, type the file name (including the
appropriate extension) and select the Add to Project option.

4 (Optional) Select or deselect Enable RAD.

5 Click Save.

The file name appears in the Source window’s title bar.

6 In the Source window, enter the appropriate code.

The new file is added to the project.

Adding an existing file to a project

You can add .html , .java , .class , and .vep project files to a project,
as well as any other type of file. If you have the Visual Cafe Professional
Edition or Visual Cafe Database Edition, you can add DLLs as well. You can
add ZIP files and DLLs to a project and, from your Java code, import any
packages or class files it contains.

Note: Packages in a ZIP file or DLL do not appear in the Packages view of
the Project window.

The only way an HTML file will appear in the Project window is if you
manually add it. You can add HTML files to a project as a helpful
organizational tool, but its not required. Adding HTML files to your project
allows you to see how your Java applet works.

Although Visual Cafe automatically creates many Java source files for you
in its visual environment, in some cases you may want to add Java files
directly. For example, if you wanted to import a Java source file for an
applet that you created in a product other than Visual Cafe, you could
place the file in a project folder, then add the .java file to the Project
window. Visual Cafe will attempt to translate the file into its visual
environment.

If you add the project (.vep) file of a project to the current, open project,
the added project becomes a subproject of the open project it resides in.

Remember that you should store all the files of a given project in a single
folder dedicated to that project. Doing so will make deploying your
applets, applications, and Web pages much easier. See “Working with
components in a project” on page 3-48 for more information.
3-44

Using files in a project
To add files while in the Visual Cafe environment:

1 From the Insert menu, choose Files into Project.

The Project Files dialog box appears:

2 Choose either Net Files (*.java , *.html , *.htm , *.gif ,
*.jpg , *.jpeg , *.au , *.prop) or All Files (*.*) from the Files
of Type drop-down list.

If Net Files is chosen, only files in the project that have the specified
extensions are displayed in the upper scrolling list. If All Files is
chosen, all files are listed.

3 Navigate to the appropriate folder and either double-click the
name of the file in the upper scrolling list or select the name and
click Add.

The name of the file is added to the lower scrolling list.

4 Repeat step 3 for each additional file you want to add to the
project.

5 Click Add or Add All, as appropriate.

6 Click OK.
3-45

Chapter 3: Working with Projects
The file or files appear in the Project window.

To add files from Windows Explorer or another file system:

◆ Drag Java or HTML files from Windows Explorer into the Files
view of the Project window.

To add files from the Find in Files dialog box:

1 From the Search menu, choose Find in Files.

2 Select a folder.

3 Click Find.

4 Right-click on the window with the list of files. Then choose Add
All to Project.

The selected files are added to your active project. You can easily add
a large subdirectory to your project from the Find in Files dialog box.

Deleting a file from a project

As you’re developing your project, you can delete HTML and Java source
files as needed.

To remove a file with the DELETE key:

◆ Select a file in the Project window’s Files view, and press DELETE.

Alternatively, you can use the Project Files dialog box.

To remove files by using the Project Files dialog box:

1 Make the Project window active.

2 While any view (Files, Objects, or Packages) is displayed, choose
Files into Project from the Insert menu.

or

In the Files view, right-click the object window to display the pop-up
menu, then choose Insert Files.

3 In the Project Files dialog box, select one or more files from the list
in the bottom pane.

4 Click Remove.

5 Click OK.
3-46

Using files in a project
Note: Deleting a file from a project does not delete it from the project
folder nor your hard drive. You must manually delete it.

When you remove a Java source file from a project, all associated visual
elements that are created in the Java code are also removed.

Note: You can’t remove imported files; they are an implicit reference to
source files in use by your project.

Copying a file in a project

You can copy and paste a file that’s associated with an object from one
project to another, or within the same project. The file is duplicated and
placed in the target project folder, and the associated project files are
updated to reflect the change.

If you want to copy another type of file, you need to do so from a file
system window, such as Windows Explorer.

To copy a file:

1 Open the project(s) you want to use and click the Objects tab in
the Project window.

2 In the Project window, select the file you want to copy.

3 From the Edit menu, choose Copy (or click the toolbar’s Copy
button).

4 Activate the Project window that you’re moving the file to.

5 From the Edit menu, choose Paste (or click the toolbar’s Paste
button).

The file appears in the Project window. If you’re pasting into the same
project you copied the file from, the file is renamed to prevent file name
conflicts.
3-47

Chapter 3: Working with Projects
Sharing files among projects

You can reuse a file if it doesn’t include code generated by Visual Cafe. Just
add the file to another project. For more information, see “Adding an
existing file to a project” on page 4-35.

Any file that contains code that was automatically generated by Visual Cafe
should not be shared among multiple projects. The file can change in one
project, causing version problems in any other projects it belongs to.
Instead, you have a number of options. For example, you can copy the file
into the new project folder and add it to the project, create a new project
template tailored to your requirements, add your own custom components
to the Component Library, cut and paste Java code, and so on. For more
information, see “Copying a file in a project” on page 4-39 and “Creating a
project template” on page 3-86.

Note: File names are relative to the current project. For example, if you
add a file called foo.java and it resides in a subfolder (called foo1) of
the project folder, the file name is stored as foo1\foo.java and is not
fully qualified. If foo1 is a folder at the same level as the project folder,
the file will be stored as ..\foo1\foo.java.

Working with components in a project

Chapter 7 provides detailed information on working with components. In
this section you’ll learn the basics of adding a component to a project. This
section explains how to perform the following tasks:

◆ Viewing the components and HTML files in a project

◆ Adding a component to a project

For more information about adding, copying, renaming, and deleting
components, as well as additional component operations, see “Working
with forms and components” on page 7-26.

Viewing the components and HTML files in a project

The Objects view of the Project window shows the components in your
project, as well as any HTML files you’ve added. The components in a
3-48

Working with components in a project
container appear subordinate to the container, like a file system display.
The containers at the top level are separate Java files in your project, while
the components in the containers are Java code within the container Java
file.

Adding a component to a project

Visual Cafe provides several ways to add components to your project.
When you add components directly to a form in the Form Designer, they’re
also added to the associated project.

You can add a component by copying it from another location. For more
information, see “Copying components” on page 7-29.

To add a component by using an Insert menu item:

◆ Do either of the following:

❖ While the Project window or Form Designer is active, choose
an item (such as a Bean or another type of component) from
the Insert menu to add it to your project.

or

❖ Right-click the Project window and choose an item from the
pop-up menu.

The component is added to the container that’s currently selected in
the Project window.
3-49

Chapter 3: Working with Projects
Note: If the component doesn’t get added correctly, you’ll be able to see a
file in the Packages and Files views of the Project window, but you won’t
see an object in the Objects view. You’ll probably need to correct the Java
code to get the file to parse. For more information, see Chapter 4,
“Working with Source Code.”

About HTML files in Visual Cafe

Applets run within another program, usually a Web browser. You add an
applet tag to HTML code in a Web page to add that applet to the page. An
applet tag is HTML code that causes an applet to appear in a Web page.
For more information, see “How HTML and Java work together: the applet
tag” on page 3-51.

Visual Cafe’s AppletViewer lets you run and debug applets within the
Visual Cafe environment, without supplying an HTML file. You can also
run and debug your applet in a Web browser, which lets you view the
HTML page and the applet at the same time. If you want to test your applet
within an HTML page, you can select an HTML file in which to run the
applet.

You can add HTML files to a project as a useful organizational tool, but it’s
not required. Once you add an HTML file to your project, you can view it
in the Objects and Files views, open it quickly from the Project window,
and see it in the project options. For more information, see “Specifying an
applet’s HTML file” on page 5-3.

If you’ve installed Visual Page and the software has been set up properly,
you can double-click an HTML file in the Objects view to launch Visual
Page and display the HTML file. You can also view and edit an HTML file
directly in Visual Cafe’s Source window; for example, you can double-click
the HTML files in the Project window’s Files view.

To add an applet to an HTML page, you can either manually add an applet
tag to the file or drag the applet from the Visual Cafe Project window to an
HTML page displayed in Visual Page.
3-50

About HTML files in Visual Cafe
How HTML and Java work together: the applet tag

Applets are designed to be embedded in Web pages. Basic operations such
as starting, stopping, and displaying the applet are all handled by the Web
browser. To tell the Web browser to display the applet, you have to put
certain information about the applet in the HTML file.

When a Java-capable browser encounters an applet tag, it reserves
onscreen space for the applet, loads the Applet subclass onto the computer
on which the browser is running, and creates an instance of the Applet
subclass. Next, the browser initializes the applet, and the applet is off and
running.

For the Web browser to be able to display an applet, it requires some basic
information, which is provided by applet tags. Within the applet tag you
specify where to find the .class file and how large to make the display
space in the Web page. Like most HTML tags, the applet tag has an
opening tag, <APPLET>, and a closing tag, </APPLET> . The applet tag is
a link to a class file that contains bytecode. The Web browser interprets the
bytecode and displays the applet in the Web page.

In addition, there are three required attributes for the applet tag: CODE,
WIDTH, and HEIGHT.

The following listing shows an applet tag that includes the applet by the
name of HelloWorldApplet in an HTML page:

<HTML>

<HEAD>

<TITLE> A Simple Program </TITLE>

</HEAD>

<BODY>

Here is the output of my program:

<APPLET CODE="HelloWorldApplet.class" WIDTH=150
HEIGHT=25>

</APPLET>

</BODY>

</HTML>

<APPLET CODE="HelloWorldApplet.class" WIDTH=150
HEIGHT=25> instructs the browser to load the applet whose compiled
code is in the file named HelloWorldApplet.class. The browser
looks for this file in the same directory as the HTML document that
contains the tag.
3-51

Chapter 3: Working with Projects
When the browser finds the class file of the applet, it loads, creates, and
displays an instance of the class. If you include an applet tag twice in one
HTML page, the browser loads the class file once and creates and displays
two instances of the class.

The WIDTH and HEIGHT attributes work the same way as they do with an
 tag: they specify the size of the applet’s display area in pixels. Most
browsers do not let the applet resize itself to be larger or smaller than this
display area.

To specify a JAR file in an HTML file, add the variable
ARCHIVE="name.jar" to the applet tag. You can specify multiple JAR
files by delimiting them with a comma. You can use the CODEBASE
variable to specify the location of class files and the ALT variable to specify
text that will appear if a Web browser understands applet tags but can’t
display an applet.

To ensure that the required Symantec custom classes are available to your
applets, you need to supply them on your Web site. For instructions on
deployment, see “Deploying your applet” on page 5-32.

Adding an applet to an HTML page

You can add an applet to an HTML page by adding an applet tag to the
HTML code, or by dragging the applet from the Project window into an
HTML page displayed in Visual Page.

An applet tag is HTML code that causes an applet to appear in a Web page.
It has the following basic format:

<APPLET code=" applet .class" width= pixw height= pixh ></APPLET>

applet is the name of the applet.

pixw is the number of pixels for the onscreen width.

pixh is the number of pixels for the onscreen height.

If you drag an applet to an HTML page displayed in Visual Page, Visual
Page adds the applet tag for you.
3-52

Using HTML files
Here are some additional parameters you might find useful:

See also “Specifying an applet’s HTML file” on page 5-3. Consult an HTML
book for more information on the applet tag.

Using HTML files

When working with HTML files, you can do the following:

◆ View an edit the files

◆ Add an applet to an HTML page

◆ Pass parameters to applets

These tasks are discussed in the following sections.

Viewing and editing HTML files

If HTML files are included in your project, you can view and edit them
from within Visual Cafe or Visual Page.

Visual Cafe can generate all the HTML files you need to deploy your
applets. This file is called autogen_ projectname.html , and should not
be edited because it could be regenerated by Visual Cafe. If you do add
changes to this file, they will be lost when it’s regenerated.

Attribute Description

codebase= cod
ebaseURL

This optional attribute specifies the directory that contains the
applet class file(s). The default is the location of the HTML file.

archive= arch
iveList

This optional attribute describes one or more archives,
delimited by a comma, that contain classes and other resources
that will be preloaded. The classes are loaded with the
codebase, if specified. You can specify archives that are JAR
files.

alt= alternateT
ext

This optional attribute specifies any text that should be
displayed if the browser understands the APPLET tag but
cannot run Java applets.
3-53

Chapter 3: Working with Projects
To view or edit an HTML file:

1 Open the file by using one of these methods:

❖ In the Project window (Objects or Files view), double-click the
HTML file name. In order for an HTML file to appear in the
Objects or Files view, it must be inserted into the project.

❖ In the Objects view of the Project window, right-click and
choose Edit Source.

❖ Choose Open from the File menu, then select the file and click
Open.

The HTML file appears in the Source window. If you’ve installed
Visual Page, opening a file from the Objects view opens the file in
Visual Page; opening a file from the Files view opens it in the Source
window.

2 View the file and edit it in Visual Cafe’s Source window or in
Visual Page.

3 Save the file by choosing Save from the File menu.

Passing parameters to applets from an HTML file

It’s often helpful to have an applet receive information from an HTML
document. This lets you customize how applets appear in Web pages. To
pass information from an HTML document to a Java applet, use the
<PARAM> tag.

The <PARAM> tag can appear between the HTML <APPLET> and
</APPLET> tags. The <PARAM> tag has two attributes, NAME and VALUE
tags, which are used to pass data to a Java applet:

<APPLET CODE="MyApplet.class" WIDTH=100 HEIGHT=100>

<PARAM> NAME="Color" VALUE="red">

<PARAM> NAME="Number" VALUE="81">

</APPLET>

The HTML file can pass multiple parameters. After the parameters are set in
the HTML file, they can be retrieved by an applet with the getParameter
method:

String x=getParameter("Color");

In the example above, variable x is declared as type String to hold the
Color parameter retrieved from the HTML document. You must specify
the name of the parameter to retrieve from the HTML file.
3-54

Customizing a project
The parameter is named Color :

<PARAM> NAME="Color" VALUE="red">

The parameter name is specified as the argument passed to
getParameter in the applet code:

getParameter("Color");

This results in the getParameter method returning the value red from
the HTML file.

Customizing a project

You can change a variety of settings that apply to an individual project by
going to the Project menu and choosing Options. This opens the Project
Options dialog box, where you can set characteristics that apply to a
particular project, such as project release type, run-time arguments,
compiler settings, and search folders.

If you’d like to set options that apply to the Visual Cafe environment itself,
and thus all projects, see the following section, “Customizing the Visual
Cafe environment.”

About project options

Project options are project-specific, unlike the preferences you set for the
Visual Cafe environment as a whole using the Environment Options dialog
box. Project Options settings remain bound to a project even when you
close and later reopen the project. They control general project behavior,
including build and run settings.

Note: Most changes made in the Project Options dialog box do not take
effect until the next time they are needed. For example, if you change run-
time arguments, they do not take effect until the next time you run your
Java application.

To set options that apply to a single project:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.
3-55

Chapter 3: Working with Projects
The Project Options dialog box appears.

The Project Options dialog box is organized into categories; each
category’s options are on a page. Click the Project, Compiler, Directories,
Version Control, Debugger, or Deployment tab to go to that category of project
options.

By default, when the Project Options dialog box appears it displays the
Project page. By clicking different tags you can move freely between
options pages as you configure options. You can move around the options
on each page by using the TAB key. You can select another options tab by
using the Right and Left Arrow keys.

Each options page contains Cancel and OK buttons. If you click Cancel, the
options you just applied will not be set. Clicking OK saves the options
3-56

Customizing a project
settings for the current editing session; these options settings are then
available for selection — for example, in another editing session or from
the Project window.

Other elements that are found on all options pages include the Help button
and the Options pop-up menu.

Project options can be set for final and debug projects and subprojects. The
page shows the settings that are common among the selected projects.

If the settings differ among the selected projects, the settings indicate that
state.

Many of the basic project options are described in this section. Others are
described elsewhere in this manual, where project-related procedures are
discussed. This table shows where you can read about additional project
options:

Topic name Page

“Specifying execution settings for a servlet” page 3-33

“About files in a project” page 3-42

“Working with components in a project” page 3-48

“Specifying source-file search paths for a project” page 3-62

“Specifying an applet’s HTML file” page 5-3

“Specifying an applet’s HTML file” page 5-3

“Specifying the main class to run for an application” page 5-5

“Specifying arguments for application execution” page 5-6

“Specifying whether builds are debug or final” page 5-16

“Specifying whether to parse imports” page 5-18

“Specifying the output folder for a project” page 5-19

“Specifying whether to clear messages before a build” page 5-19

“Setting deployment options for a project” page 5-39

“Setting compiler options” page 5-57

“Setting exceptions” page 6-38
3-57

Chapter 3: Working with Projects
Setting project options

In this section you’ll learn how to set some common project options in the
Project Options dialog box. The following topics are discussed:

◆ Setting the program type

◆ Specifying class-file search paths for a project

◆ Specifying source-file search paths for a project

◆ Setting the class path

Setting the program type

If you started developing a project based on the empty project template,
you can still tell Visual Cafe what kind program type you want it to be.

To set the program type:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Project tab (if it’s not already active).

“Debugging applets in a Web browser” page 6-42

“Setting project options for native programs” page 11-7

“Setting version control options” page 12-7

Topic name Page
3-58

Customizing a project
4 Select one of the following options:

Option Description

Applet The project is an applet.

When you run a project, the Start with Web page setting
determines which HTML file is used. The HTML file
determines which applets are run. See “Specifying an
applet’s HTML file” on page 5-3.

To specify that your applets should run in your default
Web browser, select the Execute applet in default Web browser
option. Deselect it if you want to run applets in the Applet
Viewer associated with the Visual Cafe environment. For
more information, see “Running a project” on page 5-1.

Application The project is a stand-alone application.

To run the application from Visual Cafe, the main class
must also be specified, as well as arguments that must be
passed to it. See “Specifying the main class to run for an
application” on page 5-5.

Servlet The project contains a servlet, most likely created using
the Servlet Wizard (a project template). To run the servlet
from Visual Cafe, you can specify various parameters. For
more information, see “Specifying execution settings for a
servlet” on page 3-33.

Win32 Application
(Professional
and Database
editions)

The project is a native, stand-alone executable.

To run the application from Visual Cafe, the main class
must also be specified. See “Specifying the main class to
run for an application” on page 5-5.

You can also set the application name, which is by default
the project name appended with the .exe extension. See
“Specifying the name of a native application or DLL” on
page 11-7.

If you want to run your executable from a different
directory than where it is located, see “Specifying the
working directories for a native program” on page 11-9.
3-59

Chapter 3: Working with Projects
5 Click OK.

The changes takes effect next time you run your project.

Specifying class-file search paths for a project

You can tell Visual Cafe where to look for the class files used by a project
— for example, where to find the packages you’re using. You can do so by
setting the class path for an individual project, rather than setting it for the
whole Visual Cafe environment. Here is how you can do this, in the order
in which they are searched:

◆ Create your own custom list of directories

◆ Set Visual Cafe to automatically generate the class path based on the
.java files you have added to your project (including those created
when you add top-level components)

◆ Use the class path that is set for the Visual Cafe environment

For more information, see “Setting environment variables in the sc.ini file”
on page 3-72 and “Setting internal VM environment options” on page 5-28.

To specify class search paths for a project:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Directories tab.

Win32 DLL
(Professional
and Database
editions)

The project is a native Dynamic Link Library (DLL).

You can choose the program to use to run and debug the
DLL. See “Specifying a program for running and
debugging a DLL” on page 11-9.

You can also set the library name, which is by default the
project name appended with the appropriate extension.
See “Specifying the name of a native application or DLL”
on page 11-7.

If you want to run your executable from a different
directory than where it is located, see “Specifying the
working directories for a native program” on page 11-9.

Option Description
3-60

Customizing a project
4 In the Show directories for list, choose Input class files.

A list of folders (directories) displays. The directory order affects the
search order; the topmost directory is the first to be searched.

5 Modify the list as needed:

❖ To change the order in which directory are searched, select a
folder and move it with the Up Arrow and Down Arrow
buttons.

❖ To delete a directory from the list, select the folder and click the
Delete button.

❖ To add a directory to the list, select the blank entry (marked by
an empty box) at the bottom of the list and type the directory
name, including the full path. Or click the New button (located

Click here to create a
new folder.

Click here to delete a
folder.

Click here to move to
the next higher folder.
Click here to move to
the next subfolder.

Click here to browse to
a file.

After creating a new
folder, this field appears
where you can specify a
folder.
3-61

Chapter 3: Working with Projects
above the text box), then select a directory by clicking the
Browse (…) button that displays in the field. You can also use
the New button to insert a new entry above the selected entry.

6 To generate the class path based on the files in the project, select
Auto-generate class path. Otherwise, deselect it.

By default, this option is selected. When this option is selected, if a
file is not in the project folder, the file path is added to the class path.

7 To append the Visual Cafe environment class path to the project
class path, select Append class path. If you deselect it, the class path
defined for the Visual Cafe environment is not used.

By default, this option is selected.

8 Click OK.

The changes take effect immediately.

Specifying source-file search paths for a project

The source search path applies to Java source files and any text file that
can be opened in the Source window.

Note: You can set the source search path for the entire Visual Cafe
environment from the Environment Options dialog box and with the
javainc statement in the Visual Cafe \Bin\sc.ini file. For more
information, see “Setting environment variables in the sc.ini file” on
page 3-72 and “Setting internal VM environment options” on page 5-28.

To specify source file search paths:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Directories tab.
3-62

Customizing a project
4 In the field under Show directories for, choose Source files.

You can now add directories (folders) that can contain source files.
The directory order affects the search order: the topmost directory is
the first to be searched. The default setting, the project folder, does
not appear in the list; it is the first directory in the search order.

5 Modify the list as needed:

❖ To change the order in which directories are searched, select a
directory and move it with the Up Arrow and Down Arrow
buttons.

❖ To delete a directory from the list, select the directory and click
the Delete button.

Click here to create a
new folder.

Click here to delete a
folder.

Click here to move to
the next higher folder.
Click here to move to
the next subfolder.

Click here to browse to
a folder.

After creating a new
folder, this field appears
where you can specify a
folder.
3-63

Chapter 3: Working with Projects
❖ To add a directory to the list, select the blank entry (marked by
an empty box) at the bottom of the list and type the directory
name, including the full path. Or click the New button (located
above the text box), then select a directory by clicking the …
Browse button (...) that displays in the field. You can also use
the New button to insert a new entry above the selected entry.

6 Click OK.

The changes takes effect immediately.

Customizing the Visual Cafe environment

You can customize the Visual Cafe environment in a variety of ways by
going to the Tools menu and choosing Environment Options. This opens the
Environment Options dialog box. Here you can set characteristics that
apply to the Visual Cafe environment as a whole, not just to single projects
as in the Project Options dialog box that was described in the previous
section. Environment options include setting the Visual Cafe startup mode,
defining the Help file set, debugging tasks, text formatting, and code
editing.

About environment options

Environment options affect the entire Visual Cafe environmen: they apply
to every Visual Cafe project. The options you set stay in effect until you
return to the Environment Options dialog box and reset them.

To set options that apply to all projects:

◆ From the Tools menu, choose Environment Options.
3-64

Customizing the Visual Cafe environment
The Environment Options dialog box appears.

Most changes made in the Environment Options dialog box take effect
immediately. If this isn’t the case, a message will appear as a reminder to
restart Windows in order for the changes to take effect.

The Environment Options dialog box is organized into categories of
options, much like the Project Options dialog box. Click the General,
Debugging, Format, Keyboard, Display, Backup, Editing, Property List, Deployment,
Internal VM, Component Palette, or Virtual Machines tabs to go to that category
of environment options.

By default, when the Environment Options dialog box appears, it displays
the General page. Clicking another tab selects the corresponding page. You
can move freely between options pages as you configure options. You can
3-65

Chapter 3: Working with Projects
move around the options on each page by using the TAB key. You can
select another options tab by using the Right and Left Arrow keys.

Each options page contains Cancel and OK buttons. If you click Cancel, the
options you just applied will not be set. Clicking OK saves the options
settings for the current editing session; these options settings are then
available for selection — for example, in another editing session or from
the Project window.

Other common elements on all options pages include the Help button and
the Apply button. Click Apply to try out settings, and then if you don’t like
the result, you can click Cancel and no permanent changes have been
made.

Many of the basic environment options are described in this section.
Others are described elsewhere in this manual, where environment-related
procedures are discussed. This table shows where you can read about
additional environment options:

Topic name Page

“Working with the MDI window system” page 3-19

“Configuring the Class Browser” page 4-6

“Showing horizontal scroll bars” page 4-42

“Controlling the cursor style” page 4-43

“Changing code spacing and text capitalization” page 4-44

“Setting text formatting for a single file” page 4-53

“Specifying custom keyword formatting” page 4-58

“Using different Java virtual machines in Visual Cafe” page 5-22

“Setting internal VM environment options” page 5-28

“Setting deployment options” page 5-38

“Setting deployment options for all projects” page 5-52

“Switching to the Debug workspace when running in the
debugger”

page 6-12

“Enabling or disabling ValueTips at debug time” page 6-28

“Using incremental debugging” page 6-40
3-66

Customizing the Visual Cafe environment
Setting environment options

In this section you’ll learn how to set some common environment options
in the Environment Options dialog box. The following topics are
discussed:

◆ Defining the Visual Cafe startup mode

◆ Setting the scope of the Undo command

◆ Defining the Help file set

◆ Specifying source-file search paths for Visual Cafe

◆ Inheriting the class path from the Windows environment

◆ Setting the class path for a Web browser

◆ Setting environment variables in the sc.ini file

◆ Mapping Visual Cafe commands to key sequences

◆ Customizing the display font and color

Defining the Visual Cafe startup mode

The startup mode defines what happens when you start a new Visual Cafe
session.

“Customizing the Component Palette” page 7-13

Topic name Page
3-67

Chapter 3: Working with Projects
To establish the startup mode:

1 From the Tools menu, choose Environment Options, then click the
General tab.

2 In the On Startup area, select the appropriate option.

Option Description

Create a new project Open a new project each time Visual Cafe
starts.

Open the last project Open the project that was active the last
time you exited Visual Cafe; if there is none,
a new project is created. (This is the default)
3-68

Customizing the Visual Cafe environment
Setting the scope of the Undo command

The Undo command is available from the Edit menu and has standard
Windows functionality. The default number of undoable actions is 300.

To set the scope of the Undo command:

1 From the Tools menu, choose Environment Options, then click the
Backup tab.

2 In the Save actions for undo field, enter the number of previous
actions that you want Visual Cafe to store for each window.

The number of undoable actions is set.

Defining the Help file set

The Help file set is a group of WinHelp .hlp and .cnt files that Visual
Cafe uses at run time. They are available when you use F1 help from the
Source window or Source pane.

To define the Help file set:

1 From the Tools menu, choose Environment Options, then click the
General tab.

2 In the Help Files field, enter the .hlp file names.

Note: Certain folders are automatically searched by Visual Cafe: the
installation folder and the release \bin and \help folders.

Specifying source-file search paths for Visual Cafe

You can specify the path to locate source files if they are not in the project
folder. This setting applies to the entire Visual Cafe environment.

Do nothing Specify that no project opens and that you
will select an appropriate action after Visual
Cafe starts.

Option Description
3-69

Chapter 3: Working with Projects
Note: You can set the source-file search path for a project from the Project
Options dialog box, and for the entire environment with the javainc
statement in the \VisualCafe\Bin\sc.ini file. You can also set
environment variables in the Environment Options dialog box. For more
information, see “Setting internal VM environment options” on page 5-28.

To specify the source-file path:

1 From the Tools menu, choose Environment Options, then click the
General tab.

2 In the Look for source files in path field, type the path to locate
source files if they are not in the project.

Tip: If you add a plus sign (+) to the end of a path, Visual Cafe
searches in that path and all subdirectories. For example,
c:\myapps+ tells Visual Cafe to search in c:\myapps and all of
its subdirectories.
3-70

Customizing the Visual Cafe environment
Inheriting the class path from the Windows environment

You can set up the sc.ini file so that Windows class path information is
inherited by the entire Visual Cafe environment. However, you should
realize that the class path information might not be useful for Visual Cafe
projects and can cause delays whenever Visual Cafe searches for the
source file corresponding to a class file when your Java programs are built.
Some products that use class files do not have their own .ini file, so they
put their class path information in the Windows environment.

For Windows 95 and 98, the class path is defined in the autoexec.bat
file.

Windows NT can also use the class path in an autoexec.bat file, if it is
present. For Windows NT 4.0 and higher, you can set the CLASSPATH
variable by opening the Control Panel, then choosing System, then clicking
the Environment tab and entering a value so that it appears in the System or
User Variables list box.

Note: If you put a JAR in your class path, and the JAR is only on your
development machine, do not use compression in that JAR file.
Compression in a JAR that’s in your class path will slow your compilation
time.

To inherit the Windows class path setting:

1 In the [Environment] section of \VisualCafe\Bin\sc.ini ,
add the following specification at the end of the class statement:

;%classpath%

2 Restart Visual Cafe for the change to take effect.

Setting the class path for a Web browser

Before deploying your applet you might want your Web browser to be
able to locate the Visual Cafe classes when the browser is launched outside
of the Visual Cafe environment. The Visual Cafe installer can set this class
path information for you. To set it manually, make sure the following is
part of the class path information for your Windows environment:

C:\visualcafe\bin\components\symbeans.jar
3-71

Chapter 3: Working with Projects
Setting environment variables in the sc.ini file

You can set Visual Cafe environment variables (which don’t affect the
setting for your entire computer) by making changes to the sc.ini file.
Visual Cafe saves all its environment settings in this file.

Most Visual Cafe environment setting changes that you’ll want to make to
the sc.ini file can be done easily and quickly by using the Internal VM tab
of the Environment Options dialog box. For more information, see “Setting
internal VM environment options” on page 5-28.

However, if there are still options that you want to customize that aren’t
available in the Internal VM tab, you can edit the sc.ini file directly. You
can edit the [Environment] section of the sc.ini file, located in your
Visual Cafe Bin folder. The statement syntax is similar to that for
autoexec.bat , except that you omit the set keyword. Any changes
take effect the next time you start Visual Cafe.

Note: By default, Visual Cafe does not read the environment settings for
Windows, as specified in the autoexec.bat file. This is a change from
earlier versions of Visual Cafe. You can, however, choose to inherit the
class path from the Windows environment. For more information, see
“Inheriting the class path from the Windows environment” on page 3-71.

Setting the class path

Class path directories are placed in a semicolon-delimited (;) list in the
sc.ini file, and this list is passed to various tools, such as the compiler,
AppletViewer, and so on. The default classpath statement is similar to
this:

CLASSPATH=.;%@P%\..\JAVA\LIB;%@P%\..\JAVA\LIB\SYMCLASS.ZIP;%
@P%\..\JAVA\LIB\SYMANTEC.ZIP;%@P%\..\JAVA\LIB\CLASSES.ZIP

To add directories, you should append them to this list, not delete the
default classpath statement, because it can affect the operation of Visual
Cafe. Remember to separate each directory with a semicolon (;). For
example, to add c:\development\classes , append
;c:\development\classes so that you have the following:

CLASSPATH=.;%@P%\..\JAVA\LIB;%@P%\..\JAVA\LIB\SYMCLASS.ZIP;%
@P%\..\JAVA\LIB\SYMANTEC.ZIP;%@P%\..\JAVA\LIB\CLASSES.ZIP;
c:\development\classes
3-72

Customizing the Visual Cafe environment
Other examples

To set an environment variable FOO to the value BAR, you would add the
following line to the [Environment] section of sc.ini :

FOO=BAR

The following example appends the system-wide value of TEMP to
C:\MYTEMP and sets TEMP to this new value in the Visual Cafe
environment:

TEMP=C:\MYTEMP;%TEMP%

So if the system-wide value TEMP is C:\TEMP, in Visual Cafe TEMP will be
C:\MYTEMP;C:\TEMP .

Here %@P%\ is a macro that translates to the Bin directory of Visual Cafe:

RESDIRE=%@P%\..\resdir

In a typical install this would be c:\visualcafe\resdir . Note that you
must have the final backslash (\) for the %@P% macro to work.

Mapping Visual Cafe commands to key sequences

Visual Cafe lets you define a custom keystroke sequence for many Visual
Cafe editing operations and macros. Use a command-key sequence to
press keyboard keys to activate menu commands. Use macros to automate
sequences of commands.

Your settings can be saved in a .key file, which is stored in the
\Bin\Keys folder. Saving to a file allows you to reload or distribute the
key assignments. A VJ key file is also available, so that you can use Visual
J++ keyboard commands.

Macros are stored in the command list as macro filename. ScriptMaker
macro files, stored in \Bin\Macs\Src , appear in the list.

Note: Help on keyboard commands is available in the Macro help. This
help is available from the Help menu, and also by pressing F1 when you
are editing macros. For example, from the Tools menu, choose Macro, then
ScriptMaker, then click Edit; in the window that displays, press F1 to get the
Macro help contents.

In the Keyboard view of the Environment Options dialog box, you can also
set editing options for the Source window.
3-73

Chapter 3: Working with Projects
To access the Environment Options Keyboard view:

◆ From the Tools menu, choose Environment Options, then click the
Keyboard tab.

From the Keyboard tab of the Environment Options dialog box, you can do
te following:

◆ Choose a key file for use in the Visual Cafe environment

◆ Add a key file

◆ Delete a key file

◆ Map a command to a key sequence

◆ Delete a key assignment for a command
3-74

Customizing the Visual Cafe environment
◆ Copy the command assignment list as text

◆ Modify what commands display

◆ Specify key-editing options for the Source window

Choosing a set of key assignments

You can specify what set of command key assignments to use in Visual
Cafe by choosing a key file. You can choose key assignment files based on
the Brief, Visual Cafe, Visual J++, Norton, and Emacs environments.

To choose a key file:

1 From the Tools menu, choose Environment Options, then click the
Keyboard tab.

2 Choose a key file from the File drop-down menu. The options are
as follows:

The keyboard assignments for that environment are loaded for use in
the Visual Cafe environment.

3 Click OK.

The changes take effect immediately.

Option Description

brief Specifies the keyboard assignments used in
the Brief programming environment.

emacs Specifies the keyboard assignments used in
the Emacs programming environment.

norton Specifies the keyboard assignments used in
the Norton programming environment.

untitled Specifies the current set of keyboard
assignments.

vcafe Reverts to the default keyboard assignments in
Visual Cafe.

vj Specifies the keyboard assignments used in
the Visual J++ programming environment.
3-75

Chapter 3: Working with Projects
Adding a set of keyboard assignments

You can add your own set of keyboard assignments for use in the Visual
Cafe environment. When you start modifying the key assignments, Untitled
appears in the list of available key files. You can save the current set of
keyboard assignments under another name to create a new set of keyboard
assignments. You can save it under an existing key file name to create a
new version of that key file.

To add a key file:

1 From the Tools menu, choose Environment Options, then click the
Keyboard tab.

2 Make your modifications. For more information, see “Mapping a
command to a keyboard sequence” on page 3-77 and “Deleting
the keyboard assignment for a command” on page 3-77.

Untitled appears in the list of available key files.

3 Click Save.

The Save Key Bindings dialog box displays.

4 Enter a file name, or select one from the drop-down list.

5 Click OK.

The changes take effect immediately.

Deleting a set of keyboard assignments

You can choose to delete a set of keyboard assignments by deleting a key
file.

To delete a key file:

1 From the Tools menu, choose Environment Options, then click the
Keyboard tab.

2 Choose a key file from the File drop-down menu.

3 Click Delete.

A dialog box displays, asking you to confirm the file deletion.

4 Click OK.

The changes take effect immediately.
3-76

Customizing the Visual Cafe environment
Mapping a command to a keyboard sequence

You can define a custom keystroke sequence for many editing operations
and macros.

To map a command to a key sequence:

1 From the Tools menu, choose Environment Options, then click the
Keyboard tab.

2 Choose a key file from the File drop-down menu.

3 From the command list, select a command.

If an item has more than one key assignment, the item appears once
for each key assignment.

Tip: Click the column header to sort the list by command or key
assignment, and by forward or reverse alphabetical order.

4 To specify a key assignment, click in the New Key Assignment field
and specify the key sequence as follows:

❖ Press the key sequence on the keyboard.

❖ Click a button in the Insert Key area.

If the value you enter is already mapped to a command or macro,
that command name appears in the Assigned To area.

Tip: A command can have multiple key assignments. If the
command already has a key assignment and you add another
assignment, the command now has two separate assignments.

5 Assign the key sequence to the command by clicking Assign.

The assignments are automatically saved in an untitled file.

6 To save the settings to a file, click Save.

In the dialog box, specify the name of a new or existing .key file.
Saving to a file allows you to reload or distribute the key
assignments. Key files are stored in the \Bin\Keys folder.

Deleting the keyboard assignment for a command

You can easily delete a keyboard assignment for a command.
3-77

Chapter 3: Working with Projects
To delete the key assignment for a command:

1 From the Tools menu, choose Environment Options, then click the
Keyboard tab.

2 Choose a key file from the File drop-down menu.

3 From the Command list, select a command.

If an item has more than one key assignment, the item appears once
for each key assignment.

Tip: Click the column header to sort the list by command or key
assignment, and by forward or reverse alphabetical order.

4 Select the command in the Command list and click Unassign.

The key assignment is deleted.

Copying the command assignment list as text

You can save the set of keyboard assignments as text and use it in another
window, such as the Source window. This way you can easily create a list
of all your command-key combinations.

To copy the command assignment list as text:

1 From the Tools menu, choose Environment Options, then click the
Keyboard tab.

2 Right-click in the Command list and select Copy All.

You can paste the list into another window, such as the Source
window.

Modifying which commands are shown

You can modify what types of commands are shown in the list of
commands for keyboard assignments. You can choose to display only the
commands that have key assignments, or all commands, thus including
unbound commands. You can also choose to display only member, text, or
class commands, or all three command types.

To modify what commands are shown:

1 From the Tools menu, choose Environment Options, then click the
Keyboard tab.
3-78

Customizing the Visual Cafe environment
2 To view all commands, including commands that aren’t bound to
key assignments, right-click in the Command list and select Unbound
Commands.

You can deselect this option to view only the commands that have
key assignments.

3 To view commands that begin with either Member, Text, or Class,
right-click and select the desired option. Select All to view all
commands.

The changes take effect immediately.

Specifying key-editing options for editing source code

These option settings apply to all Source windows.

To specify editing options:

1 From the Tools menu, choose Environment Options, then click the
Keyboard tab.

2 Click More.

The Keyboard Emulation dialog box displays.
3-79

Chapter 3: Working with Projects
3 Select the options you want:

4 Click OK.

The changes take effect immediately.

Option Description

Virtual cursor When selected, you can position the cursor
anywhere in the file, regardless of the
placement of the line endings. When
deselected, you can’t position the cursor past
the end of a line. This option is deselected
by default.

Brief menu accelerators Disables menu keys. After this is selected,
any new windows will not have any
underscores beneath the top-level menu
items. This option is selected by default.

Brief-compatible selection If you choose this option, the editor stays in
the selection mode when you use the arrow
keys. This option is deselected by default.

Typing replaces selection When selected, the source editor follows the
Windows standard convention of replacing
any selected text with the first character
typed or pasted. When deselected, typing or
pasting inserts the text to the left of the
current selection. This option is selected by
default.

Normal selection for debugging Enables normal selection of text when in
debugging mode. If cleared, you can drag
from the Source window to the Variables,
Watch, and Thread windows while
debugging. This option is selected by
default.

Cut and copy line without selection When selected, you can quickly cut or copy
the current line using the standard cut or
copy keystrokes (without having to first
select the line). When deselected, you can
cut or copy a line by using the keys assigned
to the EditorCutLine or
EditorCopyLine functions. This option is
deselected by default.
3-80

Customizing the Visual Cafe environment
Customizing the display font and color

Visual Cafe allows you to set the font, font style, and font color for
development environment windows, Visual Cafe editors, and window
items. You can also change the appearance of elements in your source
code, such as comments, keywords, current line, and breakpoints.

To access the Environment Options Display view:

From the Tools menu, choose Environment Options, then click the
Display tab.

From the Display tab of the Environment Options dialog box, you can
specify the following environment options:

◆ Setting the font name and size
3-81

Chapter 3: Working with Projects
◆ Setting the font color and style

You can change the font display settings for any of the following elements
in the Visual Cafe environment:

Most of the above elements affect regular text and selected text. You can
also change how Java interface text displays in the Hierarchy pane or Class
pane.

When setting font display options for Source code, you can make separate
font settings for each of the following source elements:

Setting the font name and size

You can set the font and size of text that appears in development
environment windows, editors, and window items in the Visual Cafe

All windows Property List

Debug windows Messages window

Source code Breakpoints window

Class pane Variables window

Member pane Watch window

Hierarchy pane Threads window

Search results Call Stack window

Project window Component Library window

Environment element Description

Errors Lines where compiler errors are found

Comments Java comments

Keywords Java keywords

Current Line The line that contains the insertion point

Preprocessor Java preprocessor directives

Custom Keywords Special keywords that you define

Execution Line During debugging, the current execution line
3-82

Customizing the Visual Cafe environment
environment. Use the Preview area to see what the font settings look like
before setting them.

To set the font name and size:

1 From the Tools menu, choose Environment Options, then click the
Keyboard tab.

2 In the Category list, choose the item you want to modify. From the
Font drop-down list, choose the font that you want.

In the Preview area, you can see how the text will look.

3 From the Size drop-down menu, choose the font size that you
want.

In the Preview area you can see how the text will look.

4 Click OK.

The changes take effect immediately.

Setting the font color and style

You can set the font color and style of text that appears in development
environment windows, editors, and window items in the Visual Cafe
environment. You can choose to set a foreground color as well as a
background color. Use the Preview area to see what the font settings look
like before setting them.

To set the font color and style:

1 From the Tools menu, choose Environment Options, then click the
Keyboard tab.

2 In the Category list, choose the item you want to modify.

3 Select an item in the Color & Style list, then choose a value for
Foreground or Background, or select Bold or Italic.

The default setting is the default text color as set in the Windows
Control Panel.

Setting backup and save options

You can choose to back up, or save a copy of, source files in a temporary
location. This is helpful to prevent data loss in case files get corrupted or
damaged somehow, of if you want to revert to an earlier saved version of a
file. If you wish, you can also automate source-file backups.
3-83

Chapter 3: Working with Projects
To access the Environment Options Backup view:

◆ From the Tools menu, choose Environment Options, then click the
Backup tab.

Saving files for recovery purposes

You can automate the saving of files in temporary locations so you can
recover changes if there is a system failure.

To establish file saving:

1 From the Tools menu, choose Environment Options, then click the
Backup tab.
3-84

Customizing the Visual Cafe environment
2 Select Save Automatically and choose a time interval.

When selected, each modified edit buffer is saved at regular intervals
in a temporary file in the temp home directory. Under normal
circumstances, these temporary files are automatically deleted when
the editor exits. If a system crash or power failure occurs, the editor
will not exit normally and these temporary files will not be deleted.
This permits you to recover work that would otherwise be lost. The
temporary files created by the autosave function have names that
begin with the character ~, followed by a unique number and the
extension .sav ; for example, ~4289352.sav .

For identification purposes, the autosave function adds a line in the
following format at the beginning of each temporary file:

; Visual Cafe AUTOSAVE C:\DIR\FILENAME.EXT 10-12-98
7:35 pm

This line contains the complete path name of the corresponding file
and the date and time of the autosave, formatted as a Java language
comment. The rest of the temporary file, starting with line 2, stores
the contents of the buffer at the time the autosave was performed.

To recover from a system crash or power failure, examine each file
with the extension .sav in the temp directory.

Automating source file backups

You can control whether files in a project are automatically backed up each
time that a save is performed. When a file is backed up, a copy of it is
saved with the file extension .bak . You can also specify the location and
name of the backup files.

Note: Only Java and HTML files that have changed are backed up. For
example, if you save all files in a project, only the files that have changed
are backed up.

To automate project backups:

1 From the Tools menu, choose Environment Options, then click the
Backup tab.

2 Select Backup files on Save.
3-85

Chapter 3: Working with Projects
3 Select the location and name of the backup files:

Option Description

Create BAK file Create one or more backup files that are
named file.bak .

Copy to directory Copy the source files to the specified
directory. You can type the directory with
the full path into the text box, or click … to
select a directory from a dialog box. There is
no default.

Invoke OnBackup script Run your own macro, created with the
Visual Cafe macro utility and containing an
BackupFile method. All macros are
placed in the
\VisualCafe\Bin\Macs\Src folder.
3-86

C H A P T E R 4
Working with Source Code

This chapter describes how to edit your projects’ Java source code in Visual
Cafe. You’ll also learn how to add your own packages or third-party
packages to Visual Cafe.

Classes are the foundation of object-oriented programming. To make
working with classes easier, Visual Cafe provides several powerful features:

◆ Class Browser

◆ Insert Class Wizard

◆ Hierarchy Editor

◆ Source window

In this chapter you’ll learn how to use these features to enhance your
programs.

The Class Browser and Source window are designed with object-oriented
program development in mind. The Class Browser and Source window
now include support for JDK keywords.

About classes, members, and the Class Browser

It’s not very easy to read a 27-page source file filled with references to
multiple classes; you need to be able to keep track of what each of the
classes does, what data is in each class, and how the methods within the
classes work. The Class Browser helps you work with your source code in
an organized way.

4-1

Chapter 4: Working with Source Code
The Class Browser is a three-pane window that lists all the classes,
methods, and data items contained in your program. This tool provides
abstraction from the underlying source files by letting you navigate and
edit your classes and members quickly. In the Class Browser you’re free
from the clutter of other member implementations in the same source file.

The Class Browser window shows the class hierarchy in your project and
allows you to add classes, modify extension relationships, and view and
edit class member declarations and definitions. The Class Browser
window shows data members and methods for each class and an edit
area for working directly with the body of a method.

You see only the methods and data members for the selected class, and
only the Java code for the selected member. The isolation of member
source code provides an extra degree of security by ensuring that you
don’t unintentionally change code outside of the object’s scope. Each
member has a color-coded icon to indicate its access privileges (green is
public, yellow is protected, blue is package, and red is private).
4-2

About classes, members, and the Class Browser
There are three panes in the Class Browser: the Classes, Members, and
Source panes. Both the Classes and Members panes support keyboard
incremental searches. As you type the name of a class or member, the list
of matching objects is refined until the desired class is automatically
selected.

Pop-up menus are available for each pane when you right-click. You can
select multiple items in a pane by using SHIFT-click.

You can display classes and members in a variety of views and filter the
items that are displayed. When you’re showing classes by a hierarchical
view and a class implements one or more interfaces, the class displays
below each interface.

Classes defined in subprojects are not displayed in a project’s Class
Browser window — except for base classes from which one or more
classes in a project are derived. These base classes are listed in italics in the
Classes pane; you can’t examine these classes in the Members or Source
panes. To browse classes defined in a subproject, make the subproject the
frontmost project, then open a new Class Browser window.

Whereas when you work in the Source window you’re asked if you want
to save changes when you close the window, in the Class Browser you’re
not prompted. Any changes you make to classes or inheritance
relationships modify the source code immediately as you move between
members or classes.

Note: Visual Cafe does not allow you to change the structure of the
standard Java hierarchy or the source code of standard Java classes.

For more information, see “Working with classes” on page 4-6 and
“Working with members” on page 4-27.

About the Classes pane

The Class Browser’s Classes pane displays all the classes that are part of the
current project. By default, the classes are displayed by package. Your
project files will be displayed as part of the default package when you start
Visual Cafe because you haven’t created a package structure yet. In this
case, the default package represents the entire project. This view also
provides an outline in which subclasses display indented and below their
4-3

Chapter 4: Working with Source Code
parent. A class that implements interfaces appears below each interface
class.

The classes may be listed alphabetically, by package, or hierarchically. You
can choose to display your classes either alphabetically or by package.

See “Using the Classes pane” on page 4-12 for more information.

About the Members pane

The data and methods in a class are called members of that class. The
Class Browser’s Members pane gives you an organized look at the data and
methods the selected class is made of. The color of an icon shows level of
4-4

About classes, members, and the Class Browser
access for a class: yellow means it’s protected, green means it’s a public
class, and blue means it’s a package.

See “Using the Members pane” on page 4-13 for more information.

About the Source pane

The Source pane displays the source code for the member data or method
that’s selected in the Members pane. You can edit the code for your
programs in the Source pane. All changes made to the class using the Class
Browser will automatically be added to the associated source file.

The Source pane displays the source code for a class definition, a member
definition, or a data definition. All editing operations available in the
Source window are available in the Source pane. Any editing operation
4-5

Chapter 4: Working with Source Code
done within the Source pane is synchronized with all open Source
windows.

Note: The Class Browser’s Source pane has the same editing functions as
the Source window. See “Using the Source window” on page 4-41 for more
information.

Working with classes

When working with the classes, you can perform the following tasks:

◆ Configuring the Class Browser

◆ Opening a Class Browser window

◆ Using the Classes pane

◆ Using the Members pane

◆ Using the Source pane

◆ Using the Insert Class Wizard

◆ Adding a class

◆ Copying or moving a class

◆ Renaming a class

◆ Viewing and editing the source code for a class

◆ Deleting a class

◆ Working with members

These topics are discussed in the following sections.

Configuring the Class Browser

You can choose how the Class Browser displays information. You can also
enable multiple-component selection and select confirmation options for
the Class Browser. When the Class Browser opens, all packages are
expanded.
4-6

Working with classes
Tip: To collapse all packages, select a package and press SHIFT and - (the
hyphen key) at the same time.

To configure the Class Browser window:

◆ Drag the sides of each pane to adjust the display of its contents.

or

◆ Use the Classes menu to:

❖ toggle the display of pane titles on and off

❖ toggle the class list between alphabetical and hierarchical order

To change the way in which classes and members are displayed:

1 In the Classes pane, choose Options from the Classes menu, or
right-click and choose Options from the pop-up menu.

The Class Options dialog box appears.

2 To change the ordering of classes and member elements in the
Class Browser, click the Group/Sort tab and select from the
following options:

Option Description

Group Classes Specifies how the classes in the Classes pane
are to be grouped. You can group classes
alphabetically, hierarchically, or by package.
4-7

Chapter 4: Working with Source Code
3 To filter classes and members, click the Filter tab:

Choose from the following options:

Sort Members Specifies how the members in the Members
pane are to be sorted in their group.
Grouping of members is controlled with the
Group Members option. The None option sorts
the elements based on the order in which
they were created.

Group Members Defines the grouping of members in the
Members pane. The By Kind option groups
the elements as methods or data. The By
Access option groups the elements by their
access type.

For more information about viewing a
member’s access type, see “Viewing a
member’s attributes” on page 4-33.

Option Description

Show these members Defines the type of members to display in
the Members pane. Options include access
type and method types. There must be at
least one option selected in each group.

Option Description
4-8

Working with classes
4 To specify inheritance options, click the Inheritance tab:

To set the Class Browser to show inherited methods, select the Show
inherited methods option. This activates two suboptions.

❖ To add the method’s package and class name to the method
names listing, select Use full method names.

❖ To add methods to the member listing that are overridden by
methods in the class, select Show overridden methods.

5 Click OK.

The changes take effect immediately.

Configuring the Class Browser and Hierarchy Editor

You can specify how both the Class Browser and Hierarchy Editor respond
to member deletions, inheritance changes, and the selection of multiple
items.

Show member types Includes the method’s argument in the
listing.

Show imported classes Clearing this option prevents imported
classes from displaying in the Class and
Members panes.

Final, Static, Regular These are Java method types. Refer to your
Java documentation for more information.

Option Description
4-9

Chapter 4: Working with Source Code
For more information about the Hierarchy Editor, see “About the Hierarchy
Editor” on page 4-35 and “Using the Hierarchy Editor” on page 4-36.

To set Class Browser and Hierarchy Editor options:

1 From the Tools menu, choose Environment Options. Click the Editing
tab.

2 In the Class Browser and Hierarchy Editor area, select or clear
appropriate options:.

Option Description

Confirm Delete Member Requires confirmation of member deletions.
4-10

Working with classes
Opening a Class Browser window

You can open the Class Browser to see classes, methods, and data
variables, and you can have more than one Class Browser window open at
a time.

To open a Class Browser window:

◆ From Visual Cafe’s View menu, choose Class Browser.

If you choose this command with a Class Browser window already
open, the Class Browser window becomes the frontmost window.

The following information is displayed in the Class Browser window:

Confirm Inheritance Change Requires confirmation of inheritance
deletions.

Multiple Selection Specifies whether you can select multiple
classes in the Class Browser and Hierarchy
Editor. If you select Confirm, you can select
multiple classes; changes to multiple
selections require confirmation.

Option Description
4-11

Chapter 4: Working with Source Code
◆ Classes pane — shows all classes defined for the project after
compiling the project

◆ Members pane — shows the member functions and data members for
a selected class

◆ Source pane — shows the source code for a class, member, or data
item

The Class Browser’s Classes, Source, and Members panes are all lists. You
scroll a list until an item is visible. You can also type the first few letters of
the item’s name to have the list automatically scroll to the first item that
begins with those letters.

Note: You can change the relative size of the panes by dragging the size
bars. Once you’ve established a new relative size for a pane, it’s
maintained when the window is resized.

To open a new Class Browser window when one or more Class
Browser windows are already open:

◆ Choose New Window from the Window menu.

The Class Browser opens.

Note: You can’t switch a Class Browser window to a different project after
it’s been opened. To examine the classes of a different project, make the
other project the active project, then open a new Class Browser window.

Using the Classes pane

If you select a class in the Classes pane, the member functions it
implements are displayed in the Members pane. The data members it
defines are also displayed in the Members pane. Inherited member
functions and data members are not displayed. You may display a class
declaration in the Source pane by double-clicking its name in the Classes
pane.

By default, classes appear alphabetically by full package name. The classes
in the default package are displayed first. If you wish, you can change the
way in which classes are displayed in the Classes pane.
4-12

Working with classes
To specify how classes appear, see “Configuring the Class Browser” on
page 4-6.

Note: In order to have a class to appear in the Class Browser, the file that
the class is in must be a part of the current project.

To locate a class in the Classes pane:

1 Click in the Classes pane, then type the class name.

For example, to locate java.awt.FlowLayout , type flo , press
TAB to go to the next entry with that letter sequence.

As you type, selections are made to match the text you enter. As you
continue typing, the search is refined.

2 The class you’re searching for is highlighted.

Notes: In the Class Browser the search is conducted by package, and only
expanded packages are searched. If you want to locate a class in a
particular package, you need to expand the package by clicking the +,
then start typing. If you want to exclude a package from a search, click the
- to collapse the package. You can also press SHIFT-+ and SHIFT- – to
expand and collapse packages.

If the class you want is not displayed in the pane, you might need to
change which classes are displayed, as described next.

Using the Members pane

By default, the methods and data members display in two groups, with
each element sorted alphabetically within the group. Each element has a
color-coded icon to indicate its access privileges (green means public,
yellow means protected, blue means package, and red means private.) If
you wish, you can change the way in which members are displayed in the
Members pane.

See “Working with members” on page 4-27 for more information.
4-13

Chapter 4: Working with Source Code
To change the way in which inherited methods are displayed:

1 While the Class Browser is the active window, choose Options from
the Classes menu. Alternatively, you can right-click in the Class
Browser’s Members pane and choose Options.

The Class Options dialog box appears.

2 Click the Inheritance tab.

3 Select Show inherited methods, or deselect it, as appropriate.

If selected, these suboptions are now available to select or deselect:

❖ Use full method names

Selecting this option adds the method’s package and class
name to the method names in the listing.

❖ Show overridden methods

This option adds methods that are overridden by methods
in the class to the Member listing.

4 Click OK.

The changes take effect immediately.

Using the Source pane

You can view source code in the Source pane of the Class Browser or in a
Source window.

Note: The Class Browser’s Source pane has the same editing functions as
the Source window. See “Using the Source window” on page 4-41 for more
information.

To display source code in the Class Browser’s Source pane:

◆ Select a class in the Classes pane, then a member in the Members
pane.

To display source code in the Source window:

◆ Select a class from the Class Browser’s Classes pane, then choose
Go to Source from the Classes menu; alternatively, you can right-
click a class and choose Go to Source. See “Using the Source
window” on page 4-41 for more information.
4-14

Working with classes
Using the Insert Class Wizard

The Insert Class Wizard makes creating new Java classes and interfaces
easier and more foolproof by setting up a complete prototype for you. You
can also edit existing classes.

The following enhancements have been added to the Insert Class Wizard:

◆ Bean option

◆ Properties page

◆ Events page

Launch the Insert Class Wizard from the Insert menu, Class Browser, or
Hierarchy Editor.

To define a new class or interface with the Insert Class Wizard:

1 To define a new class or interface, do one of the following:

❖ From the Insert menu, choose Class.

❖ Select a class or interface in the Classes pane of the Class
Browser, then right-click and choose Insert Class.

❖ Select a class or interface in the Hierarchy Editor, then right-
click and choose Insert Class.

❖ Select a class or interface in the Hierarchy Editor, then drag a
line from it.

❖ By default (as set in the Environment Options dialog box) you
can press INSERT from the Class Browser or Hierarchy Editor.

When you select a class, that class becomes the default class to
inherit from.

To edit a class or interface, do one of the following:

❖ Select a class or interface in the Classes pane of the Class
Browser, then choose Edit Class from the Classes menu, or
right-click and choose Edit Class.
4-15

Chapter 4: Working with Source Code
2 On the first page of the wizard, specify the options that you need:

Option Description

Type Select Class if you’re creating a class, or
Interface if you’re creating an interface.

Name Type the name of the class or interface.

Source Type the complete path to the Java file. Click
the Browse button (...) to browse. In the Edit
Class File dialog box, you can specify the
package and Java file name; the file path is
displayed for you.

Package Choose a package to add the class or
interface to, or None if you don’t want to
modify the existing package.

Extends If you’re defining a class, choose a class to
extend from.
4-16

Working with classes
3 Click Finish if you’re finished with the definition, or Next to
continue.

The next page of the wizard appears, where you can choose the
interfaces to implement:

Access Select whether you want to make access to
your class through Package, Public, Private or
Protected. Public is available only if the class
name and file name are the same; Protected
and Private are for inner classes only.

Final or Abstract Select Final class or Abstract class.

Bean Select Bean if you want a class constructor
method that takes zero parameters (it has a
null constructor). Remember that the
minimum requirements of a Bean are that it
can be instantiated (it is not an abstract class
or interface), it is public, and it has a public
class constructor method that takes zero
parameters.

Option Description
4-17

Chapter 4: Working with Source Code
4 From the Available interfaces list, select the interfaces you want to
implement and click the button with a downward-pointing arrow.

To move an interface from the lower list box to the upper one, select
the interface and click the button with a upward-pointing arrow.

5 Click Finish if you’re finished with the definition, or Next to
continue.

The next page of the wizard appears, where you can choose the
methods to override. Required methods appear in the Override these
methods list box.

6 From the Available methods list, select the methods you want to
override and click the downward-pointing arrow.

To move a method from the lower list box to the upper one, select
the method and click the upward-pointing arrow. You can’t move
methods that are required.

7 Click Finish if you’re finished with the definition, or Next to
continue.
4-18

Working with classes
The next page of the wizard appears, where you can work with
properties.

8 Specify properties.

❖ To add a property, click Add and specify the characteristics of
the property.

❖ To remove a property, select a property and click Remove. You
cannot remove properties that were introspected from the base
class.

❖ To edit a property, select the property and specify the
characteristics of the property.

Here are descriptions of the property characteristics you can enter:

Field Description

Name Name of the property. This field is required.

Type Choose a type from the drop-down list.

Setter method Visual Cafe introspects the setter method
from the base class.

Getter method Visual Cafe introspects the getter method
from the base class.
4-19

Chapter 4: Working with Source Code
9 Click Finish if you are finished with the definition, or Next to
continue.

Default value The default value of the property. It should
be valid for the type you chose.

Read-only When you select Read-only, there is no setter
method.

Write-only When you select Write-only, there is no getter
method.

Bound Selecting this option generates code that
takes care of creating notifications so that
other objects get notified when the property
changes value.

Constrained Selecting this option generates code that
takes care of creating notifications so that
other objects get notified before the property
changes value and can reject the change.

Transient When you select Transient, the property is
not serializable.

Field Description
4-20

Working with classes
The next page of the wizard appears, where you choose events to
generate:

10 From the Available events list, select the events that you want to
generate and click the downward-pointing arrow.

To move an event from the lower list box to the upper one, select the
event and click the upward-pointing arrow.

11 If you want to review or change part of the definition, click Back.

You can go back to any of the previous wizard pages.

12 Click Finish when you’re finished with the definition.

The new class is inserted into the active project.

13 Complete the definition of the class or interface in the Source
window or the Class Browser’s Source pane.

For more information, see “Using the Source window” on page 4-41
or “Working with classes” on page 4-6.

Adding a class

You can add a class at any time by choosing Class from the Insert menu.
4-21

Chapter 4: Working with Source Code
You can add a class with the Insert Class Wizard (see “Using the Insert
Class Wizard” on page 4-15 for more information). You can also add a class
from the Source window (see “Using the Source window” on page 4-41 for
more information) or the Project window.

To add a class:

◆ Choose Class from the Insert menu, or right-click and choose Insert
Class from the pop-up menu.

You can locate classes in the Source window, Hierarchy Editor, Project
window, and Class Browser.

To add a class name by dragging it into source code:

◆ Select the class in the Classes pane, then drag it into the Class
Browser’s Source pane or a Source window.

The full class name, full method signature, or data variable is added
at the location where you drop it.

To add a class from the Source window:

◆ Type the Java code that creates a class.

For more information, see “Using the Code Helper” on page 4-49.

To add a class from the Project window:

◆ Add a top-level component to the Project window’s Objects view.

A new class and Java source file are created.

Editing a class

You can edit classes with the Insert Class Wizard, or manually edit them
from the Source window, Class Browser, or Hierarchy Editor.

For information on using the Insert Class Wizard, see “Using the Insert
Class Wizard” on page 4-15.

For information about editing a class from the Hierarchy Editor, see
“Changing a class inheritance” on page 4-37.
4-22

Working with classes
To manually edit a class in the Source window:

◆ Find the class and edit the Java code.

To manually edit a class from the Class Browser:

1 Select a class in the Classes pane.

2 Select a member in the Members pane.

3 Edit the class in the Source pane.

Copying or moving a class

You can use menu commands or drag-and-drop to copy or move classes.
You can copy and move text within the same window or between the
Source window and the Class Browser’s Source pane.

To copy or move a class:

◆ Do one of the following:

❖ Select some code, then choose Cut or Copy from the Edit menu,
or right-click and choose Cut or Copy. Position the cursor where
you want to paste, then choose Paste from the Edit menu, or
right-click and choose Paste.

❖ Drag a block of selected text to move it.

❖ Press CTRL while dragging a block of selected text to copy the
text. (A + appears over the cursor when a copy operation is
being performed.)

Renaming a class

You can rename a class with the Insert Class Wizard (see “Using the Insert
Class Wizard” on page 4-15 for more information), or manually rename a
class from the Project window, Source window, or Class Browser.

To rename a class in the Project window:

◆ Rename a top-level component in the Project window’s Objects
view. Doing so changes the class name, constructor, and all
references in the source file.
4-23

Chapter 4: Working with Source Code
To rename a class in the Source window:

◆ Find the class and rename it, then search for its name and rename
all occurrences.

To rename a class in the Class Browser

1 Select the class in the Classes pane. Then click the class again.

2 When an edit box appears, type the new name or edit the existing
name.

The class is renamed, including the constructor.

Viewing and editing the source code for a class

You can view and edit a project’s source code in the Class Browser’s
Source pane or in the Source window. Both provide the same editing
functions.

To display source code in the Class Browser’s Source pane:

1 Select a class in the Classes pane.

2 Select a member in the Members pane.

3 View and edit the class in the Source pane.

To display source code in the Source window:

◆ Select a class from the Class Browser’s Classes pane, then choose
Go to Source from the Classes menu; alternatively, you can right-
click a class and choose Go to Source. See “Using the Source
window” on page 4-41 for more information.

Deleting a class

You may want to delete a class at some point. Deleting a class removes the
source code from the file. This is different from deleting an object (from
the Objects view of the Project window); deleting an object removes the
associated .java file from the project. For more information, see
“Deleting a file from a project” on page 3-46.

Note: You cannot delete the default components, only instances of them.
4-24

Working with classes
To delete a class:

1 In the Classes pane, select a class.

2 Right-click and select Remove class.

The source code associated with the class is removed from its file.

Finding a class or class definition

You can locate classes in the Source window, Class Browser, Hierarchy
Editor, and Project window, and view class definitions.

For more information about searching files, see “Searching one or more
files” on page 4-73.

To search from the Source window or pane:

◆ While the Source window is active or while your cursor is in the
Source pane of the Class Browser, choose Find from the Search
menu to look in the current file.

or

◆ Choose Find in Files from the Search menu to look in multiple files.

For more information, see “Searching and replacing” on page 4-74.

To locate a class in the Class Browser:

◆ Click in the Classes pane, then type the class name. For example,
to locate java.awt.FlowLayout , type flo . Press TAB to go to
the next entry with that letter sequence.

As you type, selections are made to match the text you enter. As you
continue typing, the search is refined.

The class you are searching for is highlighted.

Note: In the Class Browser, the search is conducted by package
and only expanded packages are searched. So if you want to
locate a class in a particular package, you need to expand the
package by clicking the +, then start typing. If you want to exclude
a package from a search, then collapse the package (click the -).

If the class you want is not displayed in the pane, you might need to
change what classes are displayed by choosing Options from the
4-25

Chapter 4: Working with Source Code
Classes options. See “Configuring the Class Browser” on page 4-6 for
more information.

To locate a class in the Hierarchy Editor:

◆ While the Hierarchy Editor is the active window, type the class
name. For example, to locate java.awt.FlowLayout , type
flo .

As you type, selections are made to match the text you enter. As you
continue typing, the search is refined.

The class you are searching for is highlighted.

Note: If the class you want is not displayed, you might have to
enable viewing imports. While the Hierarchy Editor is the active
window, choose View Imports from the Hierarchy menu (or right-
click and choose View Imports) to toggle the display.

To go to a class definition from the Source window or pane:

◆ Perform these steps from a Source window or the Source pane of
the Class Browser.

❖ Select or click in a class, then choose Go to Definition from the
Search menu (or right-click and choose Go to Definition).

❖ If a Members window displays, select the member you want to
view.

A Class Browser window appears. For more information, see “About
classes, members, and the Class Browser” on page 4-1.

To go to a class definition from the Class Browser:

◆ Do one of the following:

❖ To display source code in the Source pane, select a class in the
Classes pane then a member in the Members pane.

or

❖ To display source code in a Source window, select a class from
the Classes pane then choose Go to Source from the Classes
menu, or right-click a class and choose Go to Source.

For more information, see “About the Source window” on page 4-38.
4-26

Working with members
To go to a class definition from the Hierarchy Editor:

◆ Do one of the following:

❖ To view a class in the Source window, select a class and choose
Go to Source from the Hierarchy menu, or right-click a class and
choose Go to Source.

or

❖ To view a class in the Class Browser, double-click a class in the
Hierarchy Editor.

To go to a class definition from the Project window:

◆ Do one of the following:

❖ Double-click a class in the Packages or Files view.

or

❖ Select a class in the Packages or Files view, then choose Edit
Source from the Object menu, or right-click and choose Edit
Source.

Working with members

Members are the data and methods in a class. When working with
members, here are the tasks you can perform:

◆ Finding a member

◆ Adding a member

◆ Copying or moving a member

◆ Deleting a member

◆ Renaming a member

◆ Viewing a member’s source code

◆ Viewing a member’s attributes

For more information, see “Using the Members pane” on page 4-13. For
information about editing event methods, see Chapter 9, “Working with
Events and Interactions.”
4-27

Chapter 4: Working with Source Code
Finding a member

You can quickly locate methods (including event handlers) and data
variables in the Source window and view their definitions. You can also
locate methods or data variables in the Class Browser’s Members pane.

To go to a method in the Source window:

1 In the Source Window’s Objects drop-down list, choose an object.

2 In the Events/Methods drop-down list, choose the event or method.

Existing events and methods are shown in bold. If you choose an
event or method that’s not bold, it’s created for you.

Note: Only top-level components have methods in the Events/
Methods list.

To go to a member definition from the Source window or pane:

Perform these steps from a Source window or the Class Browser’s Source
pane:

1 Select a member, then choose Go to Definition from the Search
menu, or right-click and choose Go to Definition.

2 If a Members window displays, select the member you want to
view.

A Class Browser window appears. For more information, see “About
classes, members, and the Class Browser” on page 4-1.

To search from the Source window or Source pane:

Do either of the following:

◆ While the Source window is active or while your cursor is in the Class
Browser’s Source pane, choose Find from the Search menu to look in
the current file.

◆ Choose Find in Files from the Search menu to look in multiple files.

For more information, see “Searching one or more files” on
page 4-73.

To locate a method or data variable:

1 Select a class in the Class Browser’s Classes pane.
4-28

Working with members
Note: If the class you want is not displayed in the pane, you might
need to change which classes are displayed. For more information,
see “Configuring the Class Browser” on page 4-6

2 Click in the Members pane, then type the method or data variable
name. For example, to locate the CENTER data variable for the
FlowLayout class, type cen . Press TAB to go to the next entry
with that letter sequence.

The method or data variable you’re searching for is highlighted. The
source code is displayed in the Source pane.

Each member has a color-coded icon to indicate its access privileges
(green is public, yellow is protected, blue is package, and red is
private).

Note: If the method or data variable you want is not displayed in
the source pane, you might need to change which members are
displayed, as described earlier in this section.

Adding a member

You can conveniently add members from the Source window or the Class
Browser’s Members pane. For information about adding event handlers,
see Chapter 9, “Working with Events and Interactions.”

Right-clicking in the Members pane allows you to add new members to the
class. You’re presented with a dialog box where you can type the
declaration of the method or data. You can also choose from a list of
methods that can be overridden. The new members are automatically
added to the source code for the class.

To create a member from the Class Browser:

1 In the Classes pane, select the class you want to add a method or
data variable to.

For more information, see “Finding a class or class definition” on
page 4-25.

2 While the Class Browser is the active window, choose Insert
Member from the Insert menu. Alternatively, you can right-click in
the Members pane and choose Insert Member.
4-29

Chapter 4: Working with Source Code
By default (as set in the Environment Options dialog box) you can
also press INSERT. For more information, see “Mapping Visual Cafe
commands to key sequences” on page 3-73.

The Insert Member dialog box appears.

3 Type the declaration and choose the access type, then click OK.

For example, int myVar() is a valid declaration you could type.
The member appears in the Members pane.

4 Select the member in the Members pane to view and edit source
code in the bottom editing window.

Note: If the method or data variable you want is not displayed in
the pane, you might need to change which members are
displayed, as described in “Using the Members pane” on
page 4-13.

To manually add a new member from the Source window:

◆ Type the Java code to add the member.

For more information, see “Using the Code Helper” on page 4-49,
“Using the Syntax Checker” on page 4-51, or a Java programming
book.

To create or add an event or method from the Source window:

1 Open the Source window for the applet or form.

2 In the Source window’s Objects drop-down list, choose an object.

3 In the Events/Methods drop-down list, choose the event or method.

Existing events and methods are shown in bold. If you choose an
event or method that is not bold, it’s created for you.
4-30

Working with members
Note: If you choose an event, Visual Cafe adds the event handler
and other code.

For more information about events and interactions, see Chapter 9,
“Working with Events and Interactions.”

To add a member name by dragging it into source code:

◆ Select the member in the Members pane, then drag it into the Class
Browser’s Source pane or a Source window.

The full class name, full method signature, or data variable is added
at the location where you drop it.

Copying or moving a member

You can use menu commands or drag-and-drop to copy or move
members. You can copy and move text within the same window, or
between the Source window and the Class Browser’s Source pane.

To copy or move a method or data variable:

◆ Do any of the following:

❖ Select code, then choose Cut or Copy from the Edit menu, or
right-click and choose Cut or Copy.

❖ Position the cursor where you want to paste, then choose Paste
from the Edit menu, or right-click and choose Paste.

❖ Drag a block of selected text to move it.

❖ Press CTRL while dragging a block of selected text to copy the
text. (A + appears over the cursor when a copy operation is
being performed.)

Deleting a member

You can delete a method or data variable from the Source window or the
Class Browser’s Members pane.

Note: Deleting an event handler is the same as deleting an interaction. See
“Deleting an interaction” on page 9-17 for more information.
4-31

Chapter 4: Working with Source Code
To delete a member from the Source window:

◆ Select the source code for the member, then press DELETE, or
choose Delete from the Edit menu.

The member is deleted from the class.

To delete a member from the Class Browser:

1 In the Class Browser’s Classes pane, select a class that contains the
member.

For more information, see “Finding a class or class definition” on
page 4-25.

2 Select a member or SHIFT-click multiple members in the Members
pane.

Note: If a method or data variable you want is not displayed in the
pane, you might need to change which members are displayed, as
described in “Using the Members pane” on page 4-13.

3 While the Class Browser is the active window, choose Delete
Member from the Classes menu, or right-click in the Members pane
and choose Delete Member.

The member is deleted from the class.

Note: You get a deletion confirmation dialog box only if it’s
enabled in the Environment Options dialog box. For more
information, see “Configuring the Class Browser” on page 4-6.

Renaming a member

You can rename members from the Source window or the Class Browser’s
Members pane (see “Using the Members pane” on page 4-13 for details).

To rename a member in the Source window:

◆ Find the member and rename it, then search for its name and
rename all occurrences.

For more information, see “Finding a member” on page 4-28.
4-32

Working with members
To rename a member in the Class Browser:

1 Select a class in the Classes pane, then the member in the
Members pane. Click the member again.

For more information, see “Finding a class or class definition” on
page 4-25 or “Finding a member” on page 4-28.

2 When an edit box appears, type the new name or edit the existing
name.

Viewing a member’s source code

You can view a member’s source code in the Class Browser’s Source pane
or in a Source window (see “Using the Source window” on page 4-41 for
more information). The Class Browser’s Source pane has the same editing
options as the Source window.

To view a member’s source code from the Class Browser:

◆ Select a class in the Classes pane, then a member in the Members
pane.

The source code appears in the Class Browser’s Source pane.

To view a member’s source code from the Source window:

◆ Select a class from the Class Browser’s Classes pane, then choose
Go to Source from the Classes menu. Alternatively, you can right-
click a class and choose Go to Source.

A Source window appears. Here you can edit the member’s Java
source code.

Viewing a member’s attributes

You can easily view the attributes of a member from the Class Browser.
Also, you can change the access type of selected members, such as
whether it’s public, private, or protected.

To view the attributes of a member from the Class Browser:

1 In the Classes pane, select the class that contains the member.

For more information, see “Finding a class or class definition” on
page 4-25.
4-33

Chapter 4: Working with Source Code
2 Click on a member in the Members pane.

If a method or data variable you want is not displayed in the pane,
you might need to change which members are displayed. For more
information, see “Using the Members pane” on page 4-13.

3 Choose Member Attributes from the Classes menu. Or, you can
right-click in the Members pane and choose Member Attributes.

The Member Attributes dialog box appears.

The class declaration is modified and the Members pane’s display is
updated to reflect the change.

If you’re editing several members simultaneously and the original
access specifiers are not identical, a Don’t Change option displays.
This option lets you change member attributes without affecting the
original access of each member.

Note: The Class Browser window does not automatically keep member
functions’ definitions synchronized with their declarations. If you change a
member function’s declaration or definition in the Source pane, you must
manually update the corresponding declaration or definition to match.
4-34

About the Hierarchy Editor
About the Hierarchy Editor

The Hierarchy Editor is a tool that provides you with a visual
representation of the classes in your project and their inheritance
relationships. You can optionally show imports as well.

All Java programs have a hierarchical structure. You can use the Hierarchy
Editor to directly manipulate the class relationships of your projects by
dragging and dropping from one class to another.

Note: Visual Cafe does not let you change the structure of the existing
preparsed class information, such as information that is associated with the
JDK and JFC source code.

You can change inheritance by clicking the line between a parent and base
class, then dragging the line by its anchor to another base class.

Double-clicking a class opens the Class Browser on the selection.

You can view all classes used by your project by right-clicking and
choosing View Imports. You can also view class data and methods using the
Hierarchy Editor’s Member and Source windows.

You can extend existing classes by clicking and dragging. You can also
create a new parent-child relationship by clicking a class and dragging to
the desired parent class. If you double-click a class, that class is displayed
in the Class Browser so you can view its data and methods.
4-35

Chapter 4: Working with Source Code
Caution: When you make changes to classes or inheritance relationships,
the relationships are automatically changed in the underlying source code
and in all open windows in the Visual Cafe environment. For that reason,
you should be careful when making changes with the Hierarchy Editor.

To display the Hierarchy Editor:

◆ While the project you want to view is active, choose Hierarchy
Editor from the View menu.

Using the Hierarchy Editor

When using the Hierarchy Editor, you can perform the following tasks:

◆ Viewing imports

◆ Locating a class in the Hierarchy Editor

◆ Changing a class inheritance

◆ Changing class attributes

Each of these topics is discussed in this section.

You can configure the Hierarchy Editor from the Editing page in the
Environment Options dialog box. For more information, see “Configuring
the Class Browser and Hierarchy Editor” on page 4-9.

Viewing imports

You can choose to view the import hierarchy in the Hierarchy Editor,
or opt to hide it from view.

To enable and disable viewing imports:

◆ While the Hierarchy Editor is the active window, choose View
Imports from the Hierarchy menu (or right-click and choose View
Imports) to toggle the display.
4-36

Using the Hierarchy Editor
Locating a class in the Hierarchy Editor

You can quickly locate a particular class in the Hierarchy Editor by typing
part of the class name.

To locate a class:

◆ While the Hierarchy Editor is the active window, type the class
name. For example, to locate java.awt.FlowLayout , type
flo .

As you type, selections are made to match the text you enter. As you
continue typing, the search is refined.

The class you’re searching for is highlighted.

Changing a class inheritance

You can quickly change or delete the inheritance relationship between a
class and its parent in the Hierarchy Editor and the Class Browser.

To change the inheritance hierarchy:

◆ Click the line between two classes, then drag the line by its anchor
to another class.

The class on the right now derives from the class you connected it to.
This changes the class’s source code.

To remove an inheritance using the Hierarchy Editor:

1 Select the line that links a class and the class it derives from.

2 Right-click the window to display the pop-up menu and choose
Remove Inheritance.

The class now extends directly from java.lang.Object.

To delete a class inheritance using the Class Browser:

1 In the Classes pane, choose Options from the Classes menu, or
right-click and choose Options.

2 In the Group/Sort tab, specify a Class Grouping of Hierarchically, then
click OK.
4-37

Chapter 4: Working with Source Code
When you’re showing classes in a Hierarchical view and a class
implements one or more interfaces, it displays below each interface.

3 In the Classes pane, select a class then press DELETE.

If you delete a class that’s specified below an interface, that interface
is deleted from the class. If you delete a class below a class, the class
now inherits directly from java.lang.Object .

To view a class in a Source window:

Select a class, then choose Go to Source from the Hierarchy menu, or
right-click a class and choose Go to Source. See “Using the Source
window” on page 4-41 for more information.

Changing class attributes

You can change a class’s name and its base class.

To change the attributes for the selected class:

1 Choose Class Attributes from the Classes or Hierarchy menu.

The Class Attributes dialog box appears, which opens the Insert Class
Wizard.

2 Use the Insert Class Wizard to edit the class. For more information,
see “Using the Insert Class Wizard” on page 4-15.

About the Source window

Visual Cafe’s Source window lets you create, examine, and modify your
project’s source files. Because these files are standard text files, you can, in
4-38

About the Source window
principle, use any source editor to work with them — but Visual Cafe’s
Source window is designed to work in concert with other Visual Cafe tools.

The Source window includes a full-featured text editor with many features
that are particularly useful when editing Java source code, such as full Java
syntax highlighting and flexible navigation tools. The Source window
supplies standard Windows functions for cutting, copying, pasting, and
deleting text. It also includes helpful editing features such as checking
delimiters and automatically indenting or unindenting after braces, as well
as providing contextual programming help with the Code Helper and
Syntax Checker.

Note: The Source window and the Class Browser’s Source pane share the
same editing functionality.

The Source window also plays an important role in debugging your
project; you can use the Source window for monitoring program execution
while debugging, and for setting breakpoints at design time (for more
information, see Chapter 6, “Debugging Your Program”).

Visual Cafe automatically saves all files open in Source windows when you
rebuild your project. During compilation, error messages are displayed in
the Messages window; when you double-click on an error message, Visual
Cafe opens a Source window on the corresponding source file, if
necessary, then jumps to the line in the source code that caused the error.
4-39

Chapter 4: Working with Source Code
The Source window can display keywords and comments in special font
styles and colors. This technique helps you track errors in source code
while you’re editing. For example, an unmatched comment (/* without a
matching */) turns a large part of the code a different color, making it
obvious where the problem lies. Also, keywords are easier to spot when
they’re in a different color or font style. Misspelled keywords can be caught
immediately when they remain displayed in the default font. By default,
comments are green, Java language keywords are blue, and standard code
text is black.

Source windows are tied to individual components and class files. All
methods in a single component are displayed in one Source window. The
active component and a complete list of its events are displayed at the top
of the window. If the event has not yet been bound to an event handler,
selecting an event name creates an event handler for that event. Events that
have been bound to an event handler appear in bold text. When you select
a bound event, the event handler associated with that event name is
displayed in the Source window’s text box.

In the Events/Methods drop-down box in the Source window, Visual Cafe
displays all events that are associated with the active component’s class.
Events that have code associated with them appear in boldface text. You
can select an event handler from this list to edit or create it, and the
associated code displays in the window. For more information, see
Chapter 9, “Working with Events and Interactions.”

To display the Source window:

◆ Do one of the following:

❖ Select a file in the Project window, then choose Edit Source from
the Object menu, or right-click and choose Edit Source.

❖ Double-click a file in the Packages or Files view of the Project
window. (If Symantec Visual Page is not installed, double-
clicking an HTML file in the Objects view opens a Source
window.)

❖ While the Form Designer is the active window, choose Edit
Source from the Object menu, or right-click and choose Edit
Source.

❖ Double-click in the Form Designer.

❖ In the Classes pane of the Class Browser, select a class and
choose Go to Source from the Classes menu, or right-click a
class and choose Go to Source.
4-40

Using the Source window
❖ In the Hierarchy Editor, select a class and choose Go to Source
from the Hierarchy menu, or right-click a class and choose Edit
Source.

❖ Open a file by choosing Open from the File menu.

Using the Source window

You can use the Source window in conjunction with the following tasks:

◆ Editing a source file

◆ Showing horizontal scroll bars

◆ Typing in the Source window

◆ Enabling and disabling RAD and automatic code generation

◆ Printing a source code file

◆ Adding custom code to a source file

◆ Using the Code Helper

◆ Using the Syntax Checker

◆ Correcting syntax errors

These topics are discussed in this section.

Editing a source file

You can use the Source window to edit your code manually. To help you
edit your source code, Visual Cafe provides two helpful tools, the Code
Helper and the Syntax checker. These tools are described later in this
chapter.

To edit a currently active file in the Source window:

◆ Choose Edit from the Source menu. Visual Cafe moves that project
to the foreground and opens an editing window for the file.
4-41

Chapter 4: Working with Source Code
To open a source file that is not currently active:

◆ Click the source file in the Project window, then choose Edit Source
from the Object menu.

The Source window provides standard Windows functions for cutting,
copying, pasting, and deleting text. You can aceess these commands from
the Edit menu, or by right-clicking and selecting them from the context
menu.

To cut, copy, or paste source code:

◆ Do one of the following:

❖ Select code, then choose either Cut or Copy from the Edit menu,
or right-click and choose either Cut or Copy.

❖ Position the cursor where you want to paste code, then choose
Paste from the Edit menu, or right-click and choose Paste.

❖ Drag a block of selected text to move it.

❖ Press CTRL while dragging a block of selected text to copy the
text. A plus sign (+) appears over the cursor when a copy
operation is being performed.

To select and move a block of code:

◆ You can select a block of text in any of the following ways:

❖ Clicking and dragging the mouse

❖ SHIFT-clicking

❖ ALT-clicking. The ALT-click drag performs a column select.

By clicking and dragging a block of selected text, you can reposition
the text anywhere in the current file.

If you wish, you can copy a block of text instead of moving it.

Showing horizontal scroll bars

You can set Visual Cafe to display horizontal scroll bars at the bottom of
Source windows and panes.
4-42

Using the Source window
To show horizontal scroll bars:

1 From the Tools menu, choose Environment Options, then click the
Editing tab.

2 Select Show horizontal scroll bars to display a scroll bar at the bottom
of Source windows and panes. This option is selected by default.

3 Click OK.

The changes take effect immediately.

Typing in the Source window

While you’re typing in the Source window, you can perform the following
tasks:

◆ Toggling typing modes

◆ Controlling the cursor style

◆ Getting help on a Java keyword or method

◆ Changing code spacing and text capitalization

These topics are discussed in this section.

Toggling typing modes

The Source window supports two typing modes: overtype, which replaces
characters as you type, and insert, which adds new characters to the file.

To toggle the typing mode:

◆ Press the INSERT key to toggle between overtype and insert
modes.

The typing mode is displayed in the Source window’s status bar.

Note: A change in typing mode applies to all open Source windows, not
just the active Source window.

Controlling the cursor style

In a Source window or pane, you can toggle between Insert mode and
Overwrite mode by pressing the INSERT key. In Overwrite mode, the new
4-43

Chapter 4: Working with Source Code
characters overwrite the existing text. The Editing tab of the Environment
Options dialog box lets you specify the appearance of the Insert and
Overwrite modes.

The Insert and Overwrite groups offer you options that govern the cursor
style in each mode.

To set the cursor style:

1 From the Tools menu, choose Environment Options, then click the
Editing tab.

2 For the Insert and Overwrite modes, select either Block, Underline, or
Vertical Bar to specify the cursor style. You can also choose Blink to
specify a blinking cursor.

3 Click OK.

The changes take effect immediately.

Getting help on a Java keyword or method

If you want to know more about a specific Java keyword or method, you
can easily find information from the online Java Reference Help.

To get help on a Java keyword or method:

◆ Position the cursor on a keyword or method, then press F1.

A list of associated topics displays in the Java Reference Help.

Changing code spacing and text capitalization

Visual Cafe lets you set formatting options for the source file you’re
working on. You can change code indentation, convert tabs to spaces or
vice versa, and change portions of code to uppercase or lowercase letters.

Option Description

Block Covers the current character.

Underline Underlines the current character.

Vertical bar The standard insertion point cursor; displays between
characters.

Blink When selected, the cursor blinks. You can set the blink rate in
the Windows Control Panel.
4-44

Using the Source window
To indent or unindent code:

◆ Select the lines of code, then choose either Indent or Unindent from
the Source window. You can also press TAB to indent code, or
SHIFT-TAB to unindent code.

The code is moved one tab position.

You can specify indentation options for a file, or for all projects. See
“Setting text formatting for a single file” on page 4-53 and “Setting
text formatting for the Visual Cafe environment” on page 4-54 for
more information.

To convert tabs to spaces or spaces to tabs:

◆ Select the code, then choose either Tabs to Spaces or Spaces to Tabs
from the Source menu.

All tab characters in the selected text become spaces, or spaces
become tabs. The number of spaces for each tab character depends
on the Tab width value for the format options.

You can also set formatting options for all source files in the
Environment Options dialog box. For more information, see “Setting
text formatting for the Visual Cafe environment” on page 4-54.

To change text to all uppercase or all lowercase letters:

◆ Select the code, then choose either Uppercase or Lowercase from
the Source menu.

Enabling and disabling RAD and automatic code generation

You can turn off the visual environment for a file, and the automatic code
generation that occurs, by translating the visual environment into source
code. Rapid Application Development, or RAD, refers to the process of
creating your programs in a visual development environment. You can
specify in your project options whether new files you add to the project
have RAD enabled or disabled. You can also turn RAD on and off for an
individual file.

By default, RAD is turned on. This means that components appear in the
Objects view of the Project window, that you can design your forms in the
Form Designer and Menu Designer, and that you can use the Interaction
Wizard to specify interactions. You might want to turn off RAD to use less
computer resources and make Visual Cafe run faster. When RAD is turned
4-45

Chapter 4: Working with Source Code
off, components disappear from the Objects view and you cannot use the
Form Designer with the file.

Caution: If RAD is off and you turn it on, Visual Cafe might change your
code in order to parse it into its visual environment.

To enable or disable RAD for new files:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box displays.

3 Click the Project tab:

Click here to enable or
disable RAD for new files
4-46

Using the Source window
4 Select Enable RAD for new files to specify that new files have RAD
enabled. Or deselect it to disable RAD for new files.

5 Click OK.

The change takes effect immediately for new files.

To enable or disable RAD for an existing file in a project:

1 In the Project window, click the Files tab.

2 Right-click a file, then choose Stop RAD or Start RAD.

To enable or disable RAD when saving a source file:

1 While in the Source window, choose Save As from the File menu.

The Save As dialog box displays.

2 Select or deselect Enable RAD, as you wish.

Printing a source code file

You can easily print a source code file, just as you would in any word-
processing application.

To print the file displayed in the Source window:

◆ Choose Print from the File menu.
4-47

Chapter 4: Working with Source Code
Adding custom code to a source file

Although you can use Visual Cafe to create applets and applications that
don’t require any custom Java code, you may want to add your own code
to advanced applets and applications. You can add custom code to your
source file from the Source window or the Class Browser’s Source pane.

You can add custom code for error handling, event control, and complex
component relationships and behavior.

In addition, you can bind event handlers to any component and to menu
commands.

Caution: Custom code, interactions, and event bindings are not deleted
from the source file when you delete a component. You must manually
maintain any file that contains custom code.

As described in “Enabling and disabling RAD and automatic code
generation” on page 4-45, you can use Visual Cafe’s visual environment to
quickly create form layouts. If you don’t want to use the visual
environment, or if you’re finished using the visual environment and want
to stop Visual Cafe from automatically generating Java code, you can turn
off the visual environment for a single file or for all new files that are
added to a project.

If you’re using the visual environment, you should create your project and
use Visual Cafe’s visual tools to create your forms before you add any
custom code. You can add components to your project, arrange
components in the Form Designer, design menus in the Menu Designer,
modify the look of individual components with the Property List, and add
interactions between components or within a component with the
Interaction Wizard.

When you’re satisfied with how your project forms are laid out, you can
then add code enhancements using the Source window or the Class
Browser’s Source pane.

Guidelines and warnings

◆ Whenever possible, make object changes using Visual Cafe, rather than
adding code directly to the source file. For example, you can add
components, classes, or class members, or change component
4-48

Using the Source window
properties by using the Component Palette, a menu selection, or the
Property List window.

◆ Do not add or modify custom code within code blocks that are
regenerated. Visual Cafe places special comments in the source code
to indicate the beginning and end of blocks of code that it manages.
These code blocks start with //{{ and end with //}} . For example, if
you add a button to a form, Visual Cafe generates the following code:

//{{DECLARE_CONTROLS

java.awt.Button button1;

//}}

//{{INIT_CONTROLS

button1 = new java.awt.Button("button");

button1.reshape(63,77,88,30);

add(button1);

//}}

To modify the code within these tags, you should try to use code syntax
that matches what Visual Cafe can generate. You should realize that in
some cases Visual Cafe might be unable to back-parse your Java file into its
visual environment.

You should try not to move this type of code block. But if you do, be sure
to move the entire code block, including its comment tags.

Using the Code Helper

To assist you in writing Java code, Visual Cafe provides a contextual helper
called the Code Helper, which interprets the current context and provides
either a list of the methods in a given class, a list of the different versions of
4-49

Chapter 4: Working with Source Code
a particular method, or a list of class objects that begin with a particular
character sequence. The Code Helper also helps you enter Javadoc tags.

To activate the Code Helper:

1 Choose Environment Options from the Tools menu, then click the
Editing tab.

2 To activate the Code Helper, select Automatically Show Code Helper.
(Deselect this option to deactivate the Code Helper.)

If you want the Code Helper to automatically enter the suggestions it
makes, select Enter code helper selection automatically. This option is
deselected by default.

3 Click Apply or OK to save the setting.

To use the Code Helper:

◆ As you type in the Source window, a drop-down list appears and
you can choose items from the list.

You can use the Code Helper on an as-needed basis by pressing
CTRL-J.
4-50

Using the Source window
Using the Syntax Checker

Visual Cafe’s Syntax Checker lets you identify problems that the compiler
would find, but alerts you while you’re in the process of writing code. This
feature can save you time and assist with troubleshooting.

To activate or deactivate the Syntax Checker:

1 Choose Environment Options from the Tools menu, then click the
Editing tab.

2 To activate the Syntax Checker, select Highlight Syntax Errors While
Editing. Otherwise, deselect it.

3 If you want the Syntax Checker to display more errors (including
some complex errors), select Show Full Compiler Errors.

With this option deselected, only parse errors are given. The Syntax
Checker will show errors for issues such as missing semicolons,
unmatched parentheses, unterminated strings, and malformed
expressions. With the option selected, a full compile occurs. The
Syntax Checker will find errors for additional issues such as classes
not found in imports, invalid types for expressions, and unknown
methods.

4 Click Apply or OK to save your settings.
4-51

Chapter 4: Working with Source Code
To use the Syntax Checker:

◆ As you type in the Source window, invalid items are highlighted in
the error color, and a yellow tool tip displays the error.

Tip: To view or set your error color, choose Environment Options from the
Tools menu, click the Display tab, then select Errors in the Color and Style list.

Correcting syntax errors

If your source code contains syntax errors, Visual Cafe flags them in the
Messages window after a compile. (See the previous section for
information on catching syntax errors as you write code.) You can go
directly to each error from the Messages window.

To go to a syntax error from the Messages window:

1 From the View menu, choose Messages to bring the Messages
window to the front.

2 Double-click on any error message to go to that error.

The file containing the error opens in a Source window at the
offending line. Once the file opens, you can edit your source code.

.

If you’re using incremental debugging (see “Using incremental
debugging” on page 6-40 for details), compile-time errors are
reported in the Messages window when you change your code.
4-52

Using the Source window
Setting text formatting for a single file

By default, the Source window automatically indents a new line to the
same depth as the previous line. You can set several indentation options,
such as automatic indentation, tab width, and indent/unindent after braces,
from the Format Options dialog box. These options apply to a single file.

Because the Source window is designed to display source files, word wrap
is not enabled by default. When you’re typing, you must press the ENTER
key to start a new line. When you type past the right edge of the window,
the text scrolls horizontally. You can enable word wrap and set a right
margin either for a particular file or for the entire Visual Cafe environment
using Visual Cafe’s text formatting options.

To set text formatting options for the Visual Cafe environment, see the
following section, “Setting text formatting for the Visual Cafe environment”
described on page 4-54.

To set format options for the Source window of a file:

1 Choose Format Options from the Source menu.

The Format Options dialog box appears.

2 Set the text formatting options you want to use.

The formatting style options in this dialog box are the same as those
in the Format tab of the Environment Options dialog box but apply
4-53

Chapter 4: Working with Source Code
only to the current file. See “Setting format options for files with a
certain extension” on page 4-55.

3 Select the remaining options as needed. These options are
described in the following table:

4 Click OK.

The changes take effect immediately.

Setting text formatting for the Visual Cafe environment

You can define a formatting style for different file types displayed in the
Visual Cafe windows. The initial file types that are available are Java and
HTML.

Option Description

Use as default for .java Assign the current settings as the default
setting.

Read only Sets the current file so that it can’t be edited.

Keep file in memory No prompts are given for saving on close or
changes. Permanently stores file in memory.
4-54

Using the Source window
To open the Format view of the Environment Options dialog box, from the
Tools menu, choose Environment Options, then click the Format tab.

To set text formatting in Visual Cafe, you can do the following:

◆ Modify extension file types for formatting

◆ Set format options for files with a certain extension

◆ Specify custom keywords

Setting format options for files with a certain extension

You can specify how text is formatted in different kinds of files, as
determined by their file type extension (*.java , *.html , and so forth).
4-55

Chapter 4: Working with Source Code
You can specify a different combination of formatting options for each kind
of file.

To set format options for files with a certain extension:

1 From the Tools menu, choose Environment Options, then click the
Format tab.

2 Choose the file extension you want to customize.

❖ To create a new file extension entry, click New and enter the
extension in the dialog box.

❖ To remove an extension from the list, choose the extension,
and click Delete.

<Untitled> is the same type you get after choosing New File from the
File menu.

<Unknown> is a file extension that does not have specific format
options set for it. This is the type of file that you get when you save a
file as an “unknown” type.

3 Set the options you want to apply to files with the designated
extension. To highlight language keywords, choose the language
from the Keywords drop-down list.

Option Description

Word wrap Enables word wrap. While you’re typing,
lines that extend beyond the right margin are
automatically broken at the last word
boundary before the margin. By default, this
option is not selected.

Check delimiters If you type a right parenthesis), square
bracket] or brace }, the editor briefly
highlights the corresponding left delimiter. If
no matching delimiter is found, an error
message displays in the status bar. By
default, this option is selected.

Indent after brace If the last character you type on a line is a
left brace, the next line is automatically
indented by an extra tab stop. This option
only works if Indent Automatically is selected.
By default, this option is selected.
4-56

Using the Source window
Indent automatically Automatically indents the first character of a
new line when you press ENTER. Use this
option to specify indented paragraphs. By
default, this option is selected.

Change tabs to spaces Tabs are inserted into the text as an
appropriate number of spaces, rather than as
tab characters. By default, this option is
selected.

Remove trailing spaces Trailing spaces and tabs are removed from
the end of each line when a file is saved. By
default, this option is not selected.

Enable custom keywords You can maintain a set of custom keywords
that are highlighted in a specified manner
within the Source window. There is one
custom keywords list that applies to all file
types that have the Enable custom keywords
option. Select a keyword type in the
Keywords list, or click Edit Custom to specify
custom keywords. To set highlighting for
custom keywords, click the Display tab. See
“Specifying custom keyword formatting” on
page 4-58. By default, this option is selected.

Indent comments at The Source window automatically indents
the comment to a specified column when
you type // or /* to start a comment. You
can specify the alignment column in the
adjacent text box. By default, this option is
not selected.

Tab width Specifies the number of columns between
tab stops (1–16). The default is four
character widths. This value may be
overridden locally in the format options for a
file.

Indent width Specifies the number of columns for each
indent. The default is four character widths.

Option Description
4-57

Chapter 4: Working with Source Code
Modifying extension file types for formatting

You can change which extension file types are available by adding or
removing entries. Each file type has its own set of formatting options that
you can specify.

To add file extension types for formatting:

1 From the Tools menu, choose Environment Options, then click the
Format tab.

2 Click New.

The Enter New File Extension dialog box displays.

3 Enter the file extension you want to add to the format type list,
and click OK.

When the extension is available from the list, you can define a format
style for the file type.

To remove file extension types for formatting:

1 From the Tools menu, choose Environment Options, then click the
Format tab.

2 From the drop-down list, select the file type you wish to remove.

3 Click Delete.

The file extension type is removed from the list.

Specifying custom keyword formatting

Custom keywords are recognized in the Source window or pane. They are
highlighted in red by default. You can change the display attributes of
custom keywords in the Environment Options Format tab, and you can add
or remove entries to the custom keyword list. These keywords are
recognized in the Source window and pane. There is one custom

Right margin Specifies the column that acts as the right
margin for word wrapping (1–512). This
value may be overridden for an individual
file. The default is 79. This value may be
overridden locally in the format options for a
file.

Option Description
4-58

About Javadoc
keywords list that applies to all file types that have the Enable custom
keywords option.

To specify custom keyword formatting:

1 From the Tools menu, choose Environment Options, then click the
Format tab.

2 Click Edit Custom.

The Custom Keywords dialog box displays.

3 Add or remove keywords, as you wish.

❖ To add a new keyword, type the keyword into the text box and
click Add.

❖ To remove a keyword from the list, click the keyword in the list
and click Remove.

4 Click OK.

You can now specify how these custom keywords will display. See
“Setting format options for files with a certain extension” on
page 4-55.

About Javadoc

You can document your source code by including special documentation
comments called Javadoc comments. You can include these comments
before each class or interface declaration and before each method,
constructor, or field declaration. Use Javadoc tags to describe the author
and version of a class, as well as a method’s parameters, what a method
returns, any related classes, and if a method throws any exceptions. There
is also a special tag that you can use to indicate a deprecated, or obsolete,
class or member, so that the Java compiler can issue warnings when the
class or member is used.

Once you’ve included your Javadoc comments, Visual Cafe can then scan
the source code files and automatically generate these comments into
HTML files. You can enhance the formatting of these HTML files by
including HTML code in the Javadoc comments. For more information
about using HTML in Visual Cafe, see “About HTML files in Visual Cafe” on
page 3-50.
4-59

Chapter 4: Working with Source Code
A Javadoc comment looks like this:

/**

* This is the description part

*

* @tag comment for the tag

*/

A Javadoc tag appears within a Javadoc comment and is of the form
@name where name can be one of the following: author , version ,
param , return , exception , since or see .

For more information about how to style your Javadoc comments, see the
Javadoc specification at Sun Microsystems’ Web site at
http://java.sun.com. The Javadoc utility in Visual Cafe is equivalent
to Javadoc 1.1 by Sun Microsystems.

About Javadoc output

Javadoc generates the following files:

File Description

packages.html Lists the packages in the documentation set. Also the
main point of entry into the documentation.

tree.html Contains the class hierarchy of all the classes in the
documentation set.

AllNames.html Contains the complete index of all fields or members.

If you specify the -splitindex option,
AllNames.html contains just those fields and
members that begin with the letter A. The other
index files are written to index- ?.html where ? is
B to Z. Index-Other.html is also written, which
contains those fields or members with a leading
underscore (_).

Package- name.html name is the name of the package. Lists classes in a
package.
4-60

Using Javadoc
Using Javadoc

You can instruct Visual Cafe to produce Javadoc documentation when your
code is compiled. In addition, you can specify where Java API
documentation is kept. You can create documentation every time you
compile, or by selecting one or more Java files and choosing Produce
Javadoc from the Project menu.

Use the Javadoc Editor to quickly enter Javadoc comments into your source
code. Visual Cafe also provides a Javadoc Viewer, which you can use to
quickly locate documentation for files, packages, JavaBeans in the
Component Library, classes and methods in the Source Editor, and more.

Note: Remember that if an HTML file has links to other files, you need to
keep the files in the same relative locations for the links to work. The
graphics files must also be kept in the same relative location.

To produce Javadoc documentation for a project:

1 Activate the Project window of the project you want to work with.

2 Choose Produce Javadoc from the Project menu.

Your Javadoc options determine what documentation is generated
and where. For more information, see “Specifying Javadoc folders” on
page 4-69 and “Setting Javadoc options” on page 4-70.

Using the Javadoc Editor

While working in the Source window, you can use the Javadoc Editor to
quickly add Javadoc tags that document your code. This documentation
will appear in HTML files when you generate Javadoc for the file.

Note: You can have only one Javadoc Editor open at a time. If you open
the Javadoc Editor for another file, the editor switches to that file.
4-61

Chapter 4: Working with Source Code
Here’s what the Javadoc Editor looks like:

You can add or view Javadoc comments for a class, method, or data item.
If you select a specific member in the source code, when you invoke the
Javadoc Editor it will display the Javadoc comments for that member by
default.

Note: You cannot add Javadoc comments to a read-only file, although you
can still browse the file in the Javadoc Viewer.

To add or view Javadoc comments:

1 Activate the Source window or the Class Browser’s Source pane
for the file you want to create Javadoc comments for. Or, if you’ve
used the Javadoc Editor at least once, in the Files view of the
Project window, right-click a file and choose Edit Javadoc
Comments.

Note: You can have only one Javadoc Editor open at a time. If you
open the Javadoc Editor for another file, the editor switches to that
file.

2 Choose Edit Javadoc Comments from the Source menu.

The Javadoc Editor appears.
4-62

Using Javadoc
After you’ve already displayed the Javadoc Editor once, or if the file
already has Javadoc comments, you can right-click and choose Edit
Javadoc Comments.

3 In the left pane, choose a member from the tree.

In the tree, click the plus sign (+) to expand an item or the minus
sign (-) to collapse it. You can also navigate using the Up, Down,
Left, and Right Arrow keys, and expand or collapse a branch by
pressing Enter or double-clicking.

The full declaration of the member appears in the status bar at the
bottom of the window. Make sure the item you selected appears in
the status bar.

The display changes, based on the member you selected.

Tip: You can adjust the size of the panels if needed by placing the
cursor over the center divider and then dragging. You can also
resize the window by dragging a side or corner.

4 In the right pane, type your Javadoc comments in the fields.

Note: You cannot enter Javadoc comments for the Classes,
Methods, and Data folders, but you can enter comments for the
items they contain.

Although you can enter Javadoc comments for all members, your
Javadoc settings determine what HTML files are generated when you
choose Produce Javadoc from the Project menu. For more information,
see “Setting Javadoc options” on page 4-70.

Note: You can type HTML formatting tags in any field except the
See Also field. See the following table for examples.

Here’s a list of Javadoc comments:

Javadoc comment Description

Description Type the documentation for this member.
Press Enter where appropriate (for example,
to create line breaks or blank lines in the
code). To create blank lines in the resulting
HTML file, however, you need to use HTML
tags such as
 or <P>. Note that the
member name is automatically included.
4-63

Chapter 4: Working with Source Code
Parameters Choose a parameter from the drop-down
list, then enter a description of the parameter
that you want to appear in the @param tag.
For example, if you type the listener
to add for the parameter “listener,” the tag
will be @param listener the
listener to add . This field appears
when you select a method that has
parameters.

Returns Type a description of the return value that
you want to appear in the @return tag.
This field appears when you select a method
that has a return value.

Author Type the information that you want to
appear in the @author tag; for example,
David Jones . Separate each author by a
comma (,); this inserts separate @author
tags for each author. This field appears when
you select a class.

Version Type the information that you want to
appear in the @version tag; for example,
2.0a October 15, 1998 . This field
appears when you select a class.

Since Type the information that you want to
appear in the @since tag; for example,
JDK 1.1 .

Deprecated Type the information you want to appear in
the @deprecated tag; for example, This
method was replaced by the
newconvert method.

See Also Type the information that you want to
appear in the @see tag; for example,
JScrollPane . For multiple See Also
references, press Enter at the end of a line to
begin each new reference.

Javadoc comment Description
4-64

Using Javadoc
Here’s a list of some HTML tags that you might want to use in your
Javadoc comments. For more information, consult your HTML
documentation.

5 To add the comments to the source file, click another member in
the tree or close the editor by clicking the Windows close box or
right-clicking and choosing Close.

To cancel changes, right-click and choose Revert.

Exceptions Choose an exception from the drop-down
list, then enter a description of this
exception that you want to appear in the
@exception tag. The exceptions are
defined with a throws method, which is
part of a method declaration. For example, if
you type something didn’t happen for
the exception “myexception,” the tag will be
@exception myexception something
didn’t happen . This field appears when
you select a method.

HTML tag Description

text Place the tag at the beginning of the text that you
want to make bold, and the tag at the end of the
specified text.

<i> text</i> Place the <i> tag at the beginning of the text that you
want to italicize, and the </i> tag at the end of the
specified text.

<c> text</c> Place the <c> tag at the beginning of the text that you
want to display as sample code, and the </c> tag at the
end of the specified text.

<p>text</p> Start a new paragraph with the <p> tag, and end it with
the </p> tag .

 Create a line break (a blank line).

<blockquote>
text
</
blockquote>

Place the <blockquote> tag at the beginning of the text
that you want to indent, and the </blockquote> tag at
the end of the specified text.

Javadoc comment Description
4-65

Chapter 4: Working with Source Code
Mod appears in the bottom-right corner if you have made changes
that aren’t reflected in the source file.

Warning: The Javadoc comments appear in the file, but you must
save the file in the Source Editor to save the changes made to the
file.

To go to the currently displayed Javadoc comment in the source file:

◆ Right-click and choose Go to Definition.

To update the Javadoc Editor display after making changes in the
source file:

◆ Click on the Javadoc Editor to bring it to the front; the contents
will be automatically updated.

Using the Javadoc Viewer

Use the Javadoc Viewer to quickly locate Javadoc documentation for files,
packages, JavaBeans in the Component Library, classes and methods in the
Source window, and more.

Any time you choose the Javadoc command from the View menu, Visual
Cafe generates or updates the Javadoc for that file, if it belongs to an open
project. If Visual Cafe has never generated Javadoc for a Java file, Visual
Cafe saves the Java file and generates the Javadoc. If Visual Cafe has
already generated Javadoc for a Java file, and you’ve modified the Java file
4-66

Using Javadoc
since then, Visual Cafe asks you to save it first; you must save the file to get
updated Javadoc output.

For files you are working on in a project, you need to choose Produce
Javadoc from the Project menu before you can view the documentation.

Tip: If you want to save time when generating an index, tree, or both for a
project with multiple source files, you can select one file in your project
and choose Produce Javadoc from the Project menu. This file should use the
classes for the entire project, such as a file with a main method that calls
everything else in your project, so that Allnames.html , tree.html ,
and packages.html are generated completely. The Javadoc
documentation at this stage will include all referenced classes (except
system classes) for the source file, but not Javadoc comments for the other
source files. Then, to get all Javadoc comments, you should do another
build with the option Always Produce Javadoc When Compiling selected, and
with both Generate Tree and Generate Index selected.

To open the Javadoc Viewer:

◆ From the View menu, choose Javadoc Viewer.
4-67

Chapter 4: Working with Source Code
To view the Javadoc for a file:

◆ Right-click a file in the Files view of the Project window and
choose View Javadoc.

To view the Javadoc for a class:

◆ Right-click an object in the Objects view of the Project window
and choose View Javadoc.

To view the Javadoc for a package:

◆ Right-click a package in the Packages view of the Project window
and choose View Javadoc.

To view the Javadoc for items in the Source window:

◆ Right-click in the body or a Javadoc comment of a class or
method, and choose View Javadoc.

or

◆ Right-click a field or a Javadoc comment for a field, and choose
View Javadoc.

If you choose View Javadoc while you are positioned at a class,
method, or field, the Javadoc Viewer displays the Javadoc for the file
displayed in the Source window, at the location where the
documentation for the class, method, or field resides. If there is no
documentation for an item, such as a private method when you didn’t
generate Javadoc for private methods, the viewer displays the HTML
file at the top of the file.

To view the Javadoc for a component in the Component Library:

◆ Right-click a component in the Component Library and choose
View Javadoc.

For Beans you have added to the Component Library, you can view
Javadoc if the Javadoc exists in the path set in the Visual Cafe
sc.ini file with the JAVADOC_VIEWER_PATH variable. The viewer
uses the first matching HTML file it finds in the path. The Javadoc
cannot be in a JAR file.

For more information about working with the sc.ini file, see
“Setting environment variables in the sc.ini file” on page 3-72.
4-68

Using Javadoc
To go to the Javadoc home for the Visual Cafe environment:

◆ In the Javadoc Viewer, click the Home button.

The viewer displays Javadoc for the JDK packages, as well as other
API information. By default, the viewer looks in
VisualCafe\Java\docs for the Java API documentation. Visual
Cafe uses the JAVADOC_VIEWER_HOME variable in the sc.ini file
to set the location of the Javadoc system home. For more information,
see “Setting environment variables in the sc.ini file” on page 3-72.

To go to the Javadoc project home:

◆ In the Javadoc Viewer, click the Project button.

The viewer displays a package index for the project. The Javadoc
Documentation Directory (which you can set in the Project Options
dialog box), holds the Javadoc documentation for your project. This
directory is by default Projectname\api . If you didn’t generate
Javadoc for a project, it’s automatically generated, which also means
that any unsaved files are saved.

To navigate forward and back between pages:

◆ In the Javadoc Viewer, click the Back and Forward buttons.

To reload the Javadoc HTML file:

◆ In the Javadoc Viewer, click the Reload button.

To stop loading an HTML file:

◆ In the Javadoc Viewer, click the Stop button.

To print the Javadoc file:

◆ In the Javadoc Viewer, click the Print button.

Specifying Javadoc folders

Your project’s Javadoc documentation will by default reside in the api
folder below your project folder. However, you can can change this setting
if you like. Also by default, the Javadoc documentation resides in a
different folder, VisualCafe\Javadocs . Although in most cases you
won’t need to change this setting, you can do so if you wish.
4-69

Chapter 4: Working with Source Code
To specify Javadoc folders:

1 Choose Options from the Project menu and click the Directories tab.

2 In the Show Directories For list, choose Output Files.

3 In the Javadoc fields, type a directory and full path in the field, or
select a directory by clicking the Browse (...) button that displays
in the field.

The Javadoc System Documentation Directory is where the Java API
documentation is located. The Javadoc Documentation Directory is
where the documentation for your project is placed. If the directories
are different, links are generated to existing Visual Cafe Javadoc
documentation in the system directory. If you make both directories
the same, then full index, tree, and package files are generated in the
documentation directory, which can take more time but may be what
you need for deployment.

4 Click OK.

The change takes effect the next time you produce Javadoc.

Setting Javadoc options

Producing Javadoc documentation is usually very fast. However, producing
the index and tree can take more time and memory.

Tip: make sure that you have enough disk space to store the
documentation.

To set Javadoc options:

1 Choose Options from the Project menu and click the Compiler tab.

2 In the Compiler Category list, choose Javadoc.
4-70

Using Javadoc
3 From the Javadoc view, set the following options as needed:

Select... To specify this...

Always Produce Javadoc When
Compiling

Produce Javadoc documentation every time
you compile your project and place the
HTML files in the folder specified in the
Javadoc Documentation Directory field
(Directories tab).

Visual Cafe generates Javadoc only for files
that have changed; this reduces compilation
time. In addition, the index, tree, and
packages files are not generated.

Include Version Include the Javadoc information specified
with the @version tag.

Include Author Include the Javadoc information specified
with the @author tag.

Generate Index Generate AllNames.html , which is an
index of all fields and methods.
packages.html is also generated; it lists
all the packages and has links to other HTML
files that list the classes in each package.

If the system and project Javadoc directories
are not in the same location, the links are
generated relative to the system directory;
otherwise, all information is copied into the
Javadoc directory, including the graphics
files. This option is used only when you
choose Produce Javadoc from the Project
menu.

Split Index Split AllNames.html into individual index
files, index-B.html through index-
Z.html and AllNames.html for A;
index-Other.html is for items beginning
with an underscore (_). You can choose
this option only if Generate Index is selected.
4-71

Chapter 4: Working with Source Code
You can set the name and path of the Javadoc executable in the
Virtual Machines tab of the Environment Options dialog box. For more
information, see “Using different Java virtual machines in Visual Cafe”
on page 5-22.

You can use the Sun Microsystems Javadoc compiler, but you’ll find
that the one in Visual Cafe is faster. In addition, the Javadoc compiler
in Visual Cafe:

❖ Supports relative links from the project documentation to the
system documentation directory.

❖ If necessary, will automatically copy the .gif image files
referenced in the documentation to where the documentation is
generated.

Generate Tree Generate tree.html , which is a class
hierarchy display with links to the class
documentation. packages.html is also
generated; it lists all of the packages and has
links to other HTML files that list the classes
in each package.

If the system and project directories are not
in the same location, the links are generated
relative to the system directory; otherwise,
all information is copied into the Javadoc
directory, including the graphics files. This
option is used only when you choose
Produce Javadoc from the Project menu.

Include Imported System Classes Include imported system classes (java.* ,
sun.* , and com.*) in the index, tree, and
package files that are generated. If you
choose to include imported system classes,
you’ll find them in the Javadoc System
Documentation Directory.

Use Sun’s Javadoc Use the Sun Microsystems Javadoc compiler.

Classes to Document Choose the option that you need. The lower
the option is in the list, the more is included.
For example, selecting And Private means that
Public, Protected, Package, and Private files
are included.

Select... To specify this...
4-72

Searching one or more files
❖ Includes a list of a class’s inner classes (if any) at the top of
each class’s HTML file.

❖ Emits warnings if it finds unknown Javadoc tags.

❖ Includes a default package showing classes which don't have a
package statement.

4 Click OK.

The change takes effect the next time that you produce Javadoc.

Searching one or more files

Visual Cafe has powerful search capabilities that make editing your work
easier. This section describes the commands in Visual Cafe’s Search menu.
In addition, the options in the Find dialog box, which opens when you
choose Find from the Search menu, are outlined.

Using wildcards in searches

You can use regular expressions to search for more specific items. Regular
expressions are wildcard characters. The pattern you search for can be a
text string or a regular expression.

Use any of the following wildcard characters to further customize your
searches:

Use this wildcard... To search for this...

?? Any character

* Zero or more occurrences of any character

@ Zero or more occurrences of the previous character
or expression

% or < Beginning of a line

$ or > End of a line
4-73

Chapter 4: Working with Source Code
Searching and replacing

The Source window offers text-based search-and-replace functions that let
you search the active window for a string and replace one string with
another. In addition, the global find feature allows you to locate a string in
any set of files.

You can also jump to specific points in a file by using Search menu
commands. These commands are described later in this section.

To search for a string in a file:

1 (Optional) Select some text in the Source window.

The selected text becomes the “Find what” criterion.

2 While the Source window is active, choose Find from the Search
menu.

[...] Any of the characters listed between the brackets [
and]. You can use a hypen (-) to indicate a range of
characters.

For example, [abc] matches a, b, or c; [a-z] matches
any lowercase letter; [A-Za-z] matches any upper- or
lowercase letter.

[~...] Any character except those listed between the left
bracket and tilde [~ and the right bracket]. You can
use a hypen (-) to indicate a range of characters.

For example, [~A] matches any character but A;
[~abc] matches any character except a, b, or c;
[~A-Za-z] matches any non-alphabetic character.

\ Take the following character literally instead of using
it as a wildcard character.

For example, you can use * to search for an asterisk
(*) or \\ to search for a backslash character (\).

\t Tab character

\f Formfeed character

Use this wildcard... To search for this...
4-74

Searching one or more files
3 Type the string you want to search for in the Find what field or
choose a previous string from the drop-down list, and select the
options you want.

Tip: Leave the Regular Expression option deselected (for speed) if
you simply want to locate a string.

4 Click Next to search forward or Previous to search backward.

To repeat the search in the same direction:

◆ Choose Find Again from the Search menu.

To replace a string with a different string:

1 (Optional) Select some text in the Source window.

The selected text becomes the “Find what” criterion.

2 While the Source window is active, choose Replace from the Search
menu.

3 Type the string you want to search for in the Find what field or
choose a previous string from the drop-down list.

4 Type the replacement string in the Replace field or choose a
previous string from the drop-down list.

Option Description

Match case Only find text strings that match the search
criteria exactly, including case.

Match whole words only Search for any string that matches the search
criteria and is preceded and appended by a
blank space. Text is a match only if it
appears exactly like the search string, not as
a portion of a larger string. For example, in
matches in , but not include .

Regular Expression Accepts regular expression wildcards in the
expression syntax. Click the right-arrow
button to display a list of valid special
characters. When you select from this list,
the Regular Expression option is
automatically selected.
4-75

Chapter 4: Working with Source Code
Note: You cannot use wildcard characters in a replacement string.

5 Select any options you want.

6 Click Replace.

The file is sequentially scanned for matching strings, and the
matching strings are replaced with the replacement text.

Tip: Choose Undo Search from the Edit menu to undo the entire set of
search-string replacements.

To search for a string in multiple files:

1 From the Search menu, choose Find in Files. You can choose to
search:

❖ All source files in the current project

Option Description

None Search for any string matching the search
criteria. Case is not considered.

Match case Only find text strings that match the search
criteria exactly, including case.

Match whole words only Search for any string that matches the search
criteria and is preceded and appended by a
blank space.

Regular expression Allows you to define a search string using
regular expression wildcard syntax. Click the
Right-Arrow button to display a list of valid
special characters.

Confirm changes You’re prompted before each replacement is
performed. If this option is not selected, the
editor replaces all occurrences of the search
string without confirmation messages.

Search only in selection This option is valid if you have a block of
text selected in the editing window. This
option limits the scope of the search to the
text in the selected block.
4-76

Searching one or more files
❖ All files listed in the Find in Files window (which opens after
the first search)

❖ All files matching the criteria you specify, including file name,
directory, date, time, and file attributes

2 Choose which files to search.

For more information, see “Specifying the search file type and
location” on page 4-78.

3 Set advanced search options as needed.

For more information, see “Setting advanced search criteria” on
page 4-79.

Comparing two files

You can compare two text files line by line. Upon completion of the
comparison, the two files display in separate windows where you can
scroll through the lines that are different.

To compare two files:

1 Choose Compare Files from the Tools menu.

The Compare Files dialog box appears.

2 Select the file to be used as the base text, File 1.

If either file is currently open, Visual Cafe uses the version that is in
memory, rather than reading the file from the disk. If you want to
pinpoint recent changes, first save the open file under a different
name, then compare it to the file on the disk.

Tip: Click the Down-Arrow button to show a drop-down list
containing the names of files that were recently compared. Click
the Browse button to display an Open File dialog box.

3 Select the file, File 2, that is mapped against File 1.

4 Specify the line number that the search should start from in both
files. These numbers can be different.

5 Specify the arrangement of the source windows that display the
results. Choose from the following options:

Option Description

Horizontal Displays one window above the other.
4-77

Chapter 4: Working with Source Code
Visual Cafe then performs the comparison on a line-by-line basis.

6 When a mismatch is found, the lines in both files are highlighted
and Visual Cafe reports where the mismatch was found.

❖ Click Next Match to resynchronize the comparison. The next set
of matching lines is then highlighted, and the Compare Files
dialog box reports where the match occurs.

❖ Click Next Difference to find the next mismatched line. You can
continue the comparison until no more differences are found.

Specifying the search file type and location

You can specify the search criteria, the type of files to search, and the file’s
location in the Name & Location tab of the Find in Files dialog box.

To specify search criteria:

1 Select the appropriate search criteria options at the bottom of the
window.

2 Specify the search pattern in the Find what field. The drop-down list
displays the previous 16 search strings. If Regular expression is

Vertical Displays one window to the side of the
other.

Option Description

Search using regular expressions Choose what you want to search for from
the pop-up menu of regular expressions.
This option is the default.

Search with wildcard symbol Select the Match Wildcards option.

Search with exact case matching Select the Match case option.

Search for an exact match to a
whole word

Select the Match whole word only option. This
option limits matches to files that contain the
search criteria string preceded and followed
by a space, tab, or punctuation character, or
a search string at the beginning or end of a
line.

Option Description
4-78

Searching one or more files
selected, you can use the more button (pictured at left) to select
valid regular-expression characters.

3 Specify the types of files to search by entering file extensions or
selecting extensions from the drop-down list.

4 Select the scope of the search. You can specify a folder, the current
project, or the last set of files found in a previous search.

5 To expand a search into subfolders, select the Search subfolders
option.

Setting advanced search criteria

You can specify file-attribute and modification search criteria from the
Advanced tab of the Find in Files dialog box.

1 Set attribute criteria by enabling the appropriate attribute options.
This narrows the search scope.

File attributes are Archive, Read Only, System, and Hidden.

Note: The Attributes checkboxes are three-state checkboxes. If an
attribute is enabled, files with the given attribute are searched. If
an attribute is cleared, files without the given attribute are
searched. If an attribute is dimmed, the attribute is ignored when
Visual Cafe decides which files to search.

2 Specify modification criteria by selecting the Files created or modified
option.

Set the appropriate values in the Date and Time fields. The field value
ignore disables the associated Date or Time field.

Date: Select Ignore to ignore the date. Otherwise, specify a date and
one of the options. For instance, specify Is and 11/6/94 to search
files last modified on November 6, 1994, or Greater and 4/1/90 to
search files last modified after April 1, 1990.

Time: Select Ignore to ignore the time. Otherwise, specify a time and
one of the options.

Jumping to a specific location

When searching a file, you can choose to go to a specific line, a particular
function, an event or method, a buffer, a bookmark, a definition, or an
4-79

Chapter 4: Working with Source Code
error. A buffer is an open file or Class Browser window that is in
temporary memory.

To go to a specific line:

1 While the Source window is active, choose Go To Line from the
Search menu.

The Go To Line dialog box appears.

2 Type the line number in the text box and click OK.

The insertion point moves to the beginning of the specified line. If
any text is currently selected, the selection is extended to include that
line.

To go to a function:

1 From the Search menu, choose Go to Function.

The Go to Function dialog box appears.

2 Select a function name from the scrolling list or type a function
name.

You can change how function names display in the list with the Show
member name first option. This option shows the member name first in
the display. The default is the form name first.

3 Click OK.

The insertion point moves to the beginning of the specified function.

To jump to an event or method:

1 Choose an object from the Source window’s Objects drop-down
list.

2 In the Events/Methods drop-down list, choose the event or method.

Existing events and methods are shown in bold. If you choose an
event or method that’s not bold, it’s created for you.

To go to a buffer:

1 Choose Go to Buffer from the Search menu.

The Go to Buffer dialog box appears, where you can change the
options for the current edit buffer or those of another.

The Go to Buffer dialog box allows you to switch to an editing buffer.
A buffer is created for each editing window.
4-80

Searching one or more files
2 Select the category of buffers you want to view:

3 Select a buffer from the list.

4 Perform any appropriate task(s), as follows:

To set a bookmark:

1 Choose Bookmarks from the Search menu.

The Bookmark dialog box appears, where you can add, remove, or
go to a bookmark. You can set and move to as many as ten locations
in your source files.

Use the Bookmarks dialog box to view or edit bookmarks.
Bookmarks are specific to the text in which the bookmark was
dropped. Adding text above the bookmark pushes the line number of
the bookmark automatically.

Option Description

File Buffer A Source window to edit an entire file.

Member Buffer A Source pane to edit a particular member
definition

Option Description

Go To Make the selected buffer’s window current.

Options Display the Current Buffer Options dialog
box to define automatic buffer formatting
and maintenance.

Save Save the buffer’s content with its current file
name.

Save As Save the buffer’s content with a new name.

Close Close the selected buffer’s window and
prompt you if there are unsaved changes.
4-81

Chapter 4: Working with Source Code
2 The bookmark list shows the locations of the ten bookmarks, by
file, line, and column. Click an entry to select it; double-click to go
to it.

Note: Bookmarks are saved through the current Visual Cafe session only.

To go to a definition:

1 With the Source window active, select or click on a class or
member, then choose Go to Definition from the Search menu, or
right-click and choose Go to Definition.

A definition could be a class, member, or variable definition, for
example.

2 If a Members window displays, select the member you want to
view.

A Class Browser window appears. For more information, see “About
classes, members, and the Class Browser” on page 4-1.

To search for an error:

With the Source window active, click the Search menu and select one
of the following options:

❖ Go to Current Error

❖ Go to First Error

❖ Go to Previous Error

❖ Go to Next Error

By selecting one of the above options, you can search for an error in
your source code and navigate easily among errors.

Button Description

Go to Moves the insertion point to the selected
bookmark. You an also double-click the
bookmark in the list.

Clear Clears the current (highlighted) bookmark.

Drop Sets the selected bookmark to the current
insertion point. The entry in the bookmark
list is updated to show the file, line, and
column.
4-82

Searching one or more files
For more information about errors in source code, see Chapter 6,
“Debugging Your Program.”

Searching for a matching delimiter

You can search for matching delimiters in a file. Delimiters separate your
code into segments, and can be parentheses (), brackets [], or braces { }.
Search for a matching delimiter to quickly determine the scope of the
current code segment.

To search for a matching delimiter:

1 In the Source window, position the insertion point in front of a
delimiter (a parenthesis or bracket, for example; a common
problem in source code is parentheses (), brackets [], or braces { }
that don’t match).

2 Choose Go to Matching Delimiter from the Search menu.

The insertion point moves to the other half of the pair.

To check delimiters in a file:

◆ Choose Format Options from the Source menu, then Check Delimiters
from the submenu.

When you select Check Delimiters, this specifies that if you type a right
parenthesis), square bracket], or brace }, the editor briefly highlights
the corresponding left delimiter. If no matching delimiter is found, an
error message displays in the status bar.

For more information about setting formatting options for a file, see
“Setting text formatting for a single file” on page 4-53.

Tip: If you’ve chosen the Check Delimiters option, delimiter checking occurs
automatically, including checking for text in strings and comments.

To check delimiters globally:

◆ Choose Environment Options from the Tools menu, then Format from
the submenu.

When you select Check Delimiters, this specifies that if you type a right
parenthesis), square bracket], or brace }, the editor briefly highlights
4-83

Chapter 4: Working with Source Code
the corresponding left delimiter. If no matching delimiter is found, an
error message displays in the status bar.

For more information about setting formatting options for all files, see
“Setting text formatting for the Visual Cafe environment” on
page 4-54.

Working with imported Java code

Java source code for all kinds of applets and applications is already written
and available for you to download from the Internet, compile, and execute.
Also, many books written on Java and Visual Cafe contain sample
programs for you to use right away.

Importing source code

If you have some source code that you’ve created with a text editor, you
can use that source code in Visual Cafe by pulling it into a Visual Cafe
project. Here’s how you can insert a .java file into Visual Cafe.

To import a .java file from outside of Visual Cafe:

1 Make sure the source file is an extension of the Applet class if you
are importing applet code. If so, then create an AWT Applet
project.

2 Click the Files tab of the Project window.

3 Right-click in the Project window and choose Insert Files from the
pop-up menu.

4 Navigate to the file, select it, and click Add.

5 Click OK.

The file is added.

Importing Visual J++ 1.1 projects

Your Visual J++ 1.1 project is converted automatically when you open the
workspace (.dsw) or project (.dsp) file with Visual Cafe. If you open the
workspace file, some of your workspace options (stored in an .opt file)
are preserved; these settings might be lost if you opened the project file
directly.
4-84

Working with imported Java code
Note: You cannot import Visual J++ 6.0 projects into Visual Cafe.

When Visual Cafe converts a project through the workspace file, it gives
the project the same name as the workspace and saves it immediately in
the same folder as the workspace. Therefore, if your workspace contains
multiple projects, you should first convert the projects that are in their own
folders, then convert the project stored in the same folder as the workspace
file.

Note: It’s best to work from copies of your Visual J++ files instead of the
originals.

Considerations when importing Visual J++ projects

While Visual Cafe has projects, Visual J++ has workspaces that contain
projects. A J++ workspace is made up of a workspace file and an options
(.opt) file. Information about the projects in a workspace is stored in a
project file (one file for every project) and in the options file. Because the
name of the options file is not stored in the project file, it’s usually better to
import projects through the workspace file rather than the project file.

The following options are preserved from the Visual J++ .opt file when
you import a project through the .dsw file, or through a .dsp file that has
the same name as the .opt file (and the .opt file is in the same folder.):

Visual Cafe project option Visual J++ configuration that sets it

Project type field in Project
tab

The Debug/Execute project under Browser and Stand-
alone interpreter options determine the setting.

Start with Web page field in
Project tab

The Use parameters from HTML page value is used; or
the Enter parameters below option tells Visual Cafe to
use Automatic.

Main class field in Project
tab

The Class for debugging/executing value is used.

Runtime arguments field in
Project tab

The Program arguments value is used.

Class Files list in Directories
tab

The Class path directories setting is used. Note that in
Visual Cafe the Append class path and Autogenerate
class path options are selected by default.
4-85

Chapter 4: Working with Source Code
The following options are preserved from the .dsp project file, whether
you open a workspace or project file:

Here are some additional considerations when importing Visual J++
projects:

◆ If you want to maintain your Visual J++ workspace and projects, you
should copy the files to another folder before conversion.

◆ Converted projects cannot be saved back into Visual J++ format.

◆ Only Visual J++ version 1.1 workspace and project files can be
imported. However, you can add Java source files created in another
product to a Visual Cafe project. For instructions, see “Adding an
existing file to a project” on page 3-44.

◆ Visual Cafe can read Visual J++ . java files that are 100% pure Java,
without proprietary Java extensions implemented by Microsoft.

◆ .class files compiled with Visual Cafe might not be compatible with
Visual J++, so you should make sure your output folders are different
for each product.

◆ You can’t import projects that use variable persistence, such as having
the location of a file be stored as
d:\mysource\$(SRCDIR)\a.java , where SRCDIR is an
environment variable and a.java is the file. In Visual Cafe, you can’t
use environment variables to control where Visual Cafe looks for a
. java file. If you want to import a project that uses variable
persistence, you need to remove variable persistence before importing
the project into Visual Cafe.

While Visual J++ lets you specify a different project type — applet or
application — for different configurations, Visual Cafe supports one project

Visual Cafe project option Visual J++ configuration that sets it

Output directory field in
Directories tab

The Output directory value is used.

Show compiler warnings
option in Compiler tab

A Warning Level of None tells Visual Cafe to deselect
the option; any other value means the option is
selected.

Generate debug information
option in Compiler tab

The Generate Debug info value is used.
4-86

Working with imported Java code
type for every project. If the project type is different for the debug and final
option sets, Visual Cafe uses the project type specified for debug.

Notes: You can choose to use Visual J++ keyboard shortcuts by specifying
them in your Visual Cafe environment options. See “Mapping Visual Cafe
commands to key sequences” on page 3-73 for more information.

In Visual Cafe, a project closes when you close the Project window. In
Visual J++, just the window closes when you close the workspace (a
project).

Importing a Visual J++ project by way of the .dsw or .dsp file

You can import a Visual J++ 1.1 file by way fo the .dsw workspace file or
the .dsp project file.

To import a Visual J++ project via the .dsw workspace file:

1 From the File menu, choose Open.

The Open dialog box appears.

2 Navigate to the folder that contains the .dsw file for the project
you want to import.

3 Choose Visual J++ Workspace Files in the Files of type field.

The .dsw and .dsp files appear.

4 Select the .dsw file from the list, then click Open.

5 If there’s more than one project in the workspace, a dialog box
appears that asks which project you want to convert. Select the
project, then click OK.

6 If you have more than two configurations defined for the project,
or if you have two configurations and neither of them in named
“Debug,” a dialog box appears that asks what configuration you
want to use for the Visual Cafe Debug and Final option sets. Select
the configuration and click OK in each dialog box.

The project is converted and opens in a Visual Cafe Project window.

7 Review the Visual Cafe project options and change them as
needed.

For more information, see “Setting environment variables in the sc.ini
file” on page 3-72.
4-87

Chapter 4: Working with Source Code
8 If the Visual Cafe project was in a different folder than the .dsw
file, choose Save As from the File menu to save your new project to
the folder where the project .dsp file is located. If you wish, you
can rename the project at the same time.

See “Saving a project” on page 3-39 for more information.

Tip: Remember that a Visual J++ project is given the same name as
the Visual J++ workspace if the project file is in the same folder as
the workspace file.

If you save the project to another folder, you can delete the Visual
Cafe project files in the same folder as the workspace. Or you can just
let them be overwritten when you import the next project.

To import a project via the .dsp workspace file:

1 From the File menu, choose Open.

The Open dialog box appears.

2 Navigate to the folder that contains the .dsp file for the project
you want to import.

3 Choose Visual J++ Workspace Files in the Files of type field.

The .dsw and .dsp files appear.

4 Select the .dsp file from the list, then click Open.

5 If you have more than two configurations defined for the project,
or if you have two configurations and neither of them is named
“Debug,” a dialog box appears that asks what configuration you
want to use for the Visual Cafe Debug and Final option sets. Select
the configuration and click OK in each dialog box.

The project is converted and opens in a Visual Cafe Project window.

6 Review the Visual Cafe project options and change them as
needed.

For more information, see “Setting environment variables in the sc.ini
file” on page 3-72.

7 Save your new project.

See “Saving a project” on page 3-39 for more information.
4-88

C H A P T E R 5
Compiling and Deploying
Your Project

Visual Cafe applets and applications are cross-platform Java programs that
you design, develop, and build using the Visual Cafe development
environment. Both are executed by a Java Virtual Machine, but applets run
only within a Web page, while applications run on their own. You can use
Visual Cafe to compile a Java program to bytecode, run it to verify its
behavior, debug it as necessary, and eventually deploy it to users.

Compiling your Java program

You can compile and run a project at any time during its development
cycle. Visual Cafe automatically saves files in the project before running.
For information about running your program within the Visual Cafe
environment, see “About files in a project” on page 3-42.

Running a project

Projects speed development by compiling only the source files that have
changed since the last time the project was built. Visual Cafe manages the
project for you by automatically analyzing the dependencies of the source
files and updating the project information each time you build the project.

So, if you make changes to only two files in a project and then direct Visual
Cafe to build the project, it recompiles only those two files.

5-1

Chapter 5: Compiling and Deploying Your Project
To run a project:

◆ Do one of the following:

❖ Choose Execute from the Project menu to run the project
without the debugger.

❖ Choose Run in Debugger from the Project menu to run the project
and start the debugger. For more information, see Chapter 6,
“Debugging Your Program.”

Important: Before running in the debugger, make sure your project
options are set to debug. When you’re ready to compile your final program,
make sure the project options are set to final. See “Specifying whether
builds are debug or final” on page 5-16 for more information

For information on running applets, see these topics in this section:

◆ Making applets run in the AppletViewer or a browser

◆ Specifying an applet’s HTML file

For information about running applications, see these topics in this section:

◆ Specifying the main class to run for an application

◆ Specifying arguments for application execution

Making applets run in the AppletViewer or a browser

When running applets from Visual Cafe, you can launch your applets in the
AppletViewer associated with the Visual Cafe environment or in the Web
browser of your choice.

Running applets in the AppletViewer can be faster, because the browser
does not have to start up. However, it’s a good idea to test your applets in
popular browsers before deployment.

Note: When you run an applet in the debugger, it is always run in the
AppletViewer by default.

To specify where applets are to run:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.
5-2

Compiling your Java program
3 In the Project Options dialog box, click the Project tab.

4 Select Applet as the Project Type, if needed, then select Execute
applet in default Web browser if you want to run the applet in a
browser; deselect it if you want to run the applet in the
AppletViewer.

5 Click OK.

The change takes effect the next time you run your project.

Tip: When this option is selected, Visual Cafe looks for the application you
have associated with the file extensions .htm and .html (Hypertext
Document file type). If an association does not exist, you must define one.

To set file associations (including the open action) in Windows 95, 98, and
NT 4.0, from a Windows file system window (such as the Explorer), choose
View, then Options (In Windows 98 it’s Folder Options), then click the File
Types tab.

A browser might have already set the association for you (for example, the
file type Netscape Hypertext Document).

Specifying an applet’s HTML file

An applet is launched from an HTML file that has an applet tag. Visual Cafe
can automatically create an HTML file with applet tags for all the applets in
your project. When you run your project from Visual Cafe, you can specify
what HTML file to use to display your applets. Here are some scenarios:

◆ If you run your project with the automatically generated HTML file in
the AppletViewer, all of your applets appear in separate windows.

◆ If you run your project with the automatically generated HTML file in a
Web browser, all of your applets appear in an otherwise blank browser
window.

◆ If you run your project with your own HTML file in the AppletViewer,
each applet that has an applet tag will appear in a separate window.

◆ If you run your project with your own HTML file in a Web browser, the
HTML file appears in a browser window, including the applets as
specified in the file.

If you want to test the files for a Web site, you could specify the home
page as the starter HTML and run the page from a Web browser. Then you
5-3

Chapter 5: Compiling and Deploying Your Project
could access the other pages from this page to make sure your applets
work.

To test the files for a Web site:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Select Applet, if needed, then specify an HTML file in one of these
ways:

❖ Choose (Automatic) to run all of the applets from an
automatically generated HTML file that is blank.

❖ Choose one of your own HTML files from the pop-up menu.
HTML files that you’ve added to your project automatically
appear in the pop-up menu.

❖ Click the Browse button (...) to browse for an HTML file.

5 Click OK.

The change takes effect the next time you run your project.

Configuring an application to run in Visual Cafe

In order to configure an application to run in Visual Cafe, you need to
specify some options. You need to specify the class that has a main
method in it. Also, if your application accepts command-line arguments,
you need to specify them.

About the main class in bytecode and native applications

The main class is the name of the class with a main method. For both a
bytecode Java application and a native Win32 Java application, the main
class is the starting point of execution.

To run a Java application from within the Visual Cafe environment, you
must specify the starting point of your application (the Java class file) so
Visual Cafe knows how to run your application. If you started a project
with the AWT Application template or inserted a Java file that already had a
main method in it, the main class was already specified for you. If there is
no entry in this field, Visual Cafe tries to use the project name.
5-4

Compiling your Java program
You should note these differences between bytecode and native
applications:

◆ When you run a bytecode application from the command line, you
type the name of the Java file that contains the main method as the
argument to java.exe , after any switches such as for the class path,
and so on. For a native Win32 application, you run the application
outside of the Visual Cafe environment, as you would any other
executable, and use the application name rather than the main class
name. See “Specifying the main class to run for an application” on
page 5-5 and “Specifying the name of a native application or DLL” on
page 11-7 for more information.

◆ An application must have a main class that contains a main method
with this signature:
static public void main(String args[])

If a bytecode application does not have a method of this format, the
application can compile but will not run. If a native application does
not have a method of this format, the application can’t compile or
run.

If your application also accepts arguments on the command line (the main
method takes arguments), you need to specify those. See “Specifying
arguments for application execution” on page 5-6.

Specifying the main class to run for an application

You can specify the main class for an application; when executing an
application, the main class is where execution begins.

To specify the main class to run for an application:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Select Application, if needed, then type the name of the class file in
the Main Class field; for example, Frame1 or Frame1.class are
both acceptable. If the class is inside a package other than the
Default Package, you need to type package_name . class_name in
this field.

You can enter one name only.

5 In the main() class pop-up menu, select the name of the class file.
5-5

Chapter 5: Compiling and Deploying Your Project
Note: The main() class pop-up menu is not populated until after
compiling. After compiling, the pop-up menu contains all the
classes that have a suitable main() .

6 Click OK.

The change takes effect the next time you run your project.

Note: If you rename a class that appears in this field, Visual Cafe
updates the field for you.

Specifying arguments for application execution

If your application accepts arguments on the command line (the main
method takes arguments), you need to specify them so Visual Cafe can run
your application from its environment. For example, the Sun Java compiler
is written in Java and takes command-line arguments.

You also need to specify the main class. See “Specifying the main class to
run for an application” on page 5-5.

To specify command-line arguments:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Select Application, if needed. In the Program arguments field, type
any arguments that should be passed to the program when you
run it. Delimit the arguments with a space.

5 Select Application, if needed, then type the name of the class file in
the Main Class field; for example, Frame1 or Frame1.class are
both acceptable. If the class is inside a package other than the
Default Package, you need to type package_name . class_name in
this field.

You can enter one name only.

6 Click OK.

The change takes effect the next time you run your project.
5-6

Compiling your Java program
Compiling from the SJ command line

If you want to save memory when compiling, you can use the Symantec
Javac (SJ) utility to compile your programs from a DOS window, and thus
out of the Visual Cafe IDE. If you have a favorite editor and make utility,
you can use the SJ tool to quickly compile programs. You can use the SJ
utility when using batch programs, and you can also redirect error and
warning messages to a file for easy viewing.

When you compile your project using the SJ command line utility, use the
following format for your command:

sj { { switches } { file.jav a } { @ file } }

The braces { } mean “repeated zero or more times.” The only required
parameter is a Java source file. For native Win32 applications or DLLs, you
also need to specify either the obj or link switch.

SJ takes arguments in any order; if any arguments conflict, the rightmost
argument takes precedence. SJ with no arguments prints a short help file to
stdout .

@file means that file is searched for as an environment variable name, and
if not found, as a file name. If the file is found, the text of the environment
variable or file name is inserted in the command line as if it were part of
the command line. In this way, you can give command line arguments
from a file (for example, if you need to circumvent the command line
length limit of an operating system). If the file is not found, no text is
inserted.

SJ takes the following switches:

Switch Description

-cdb file.cdb Generate compilation database file.cdb . This database
stores dependency information and is needed by the make
switch.

-make[:r|:w] Build only out-of-date files by checking dependencies
between all files that were passed on the command line.
You must supply a .cdb file with the cdb switch.

-make:r Check dependencies on all imported files and rebuild
them as needed.
5-7

Chapter 5: Compiling and Deploying Your Project
-make:w Check dependencies on all imported files and issue a
warning if they’re out of date.

-classpath path Use path instead of the setting of the environment variable
CLASSPATH.

-compact Removes line number information, which helps reduce file
size.

-d outputdir Set the output directory. The default is to put class files
with their respective .java files.

- debug When the compiler is Sun’s compiler, javac , using this
option causes the compiler to report diagnostic messages
about its own execution. When the compiler is SJ, the
switch is ignored.

-depend file.dep
or file.dar

Generate dependencies into file.dep . You can read it to
see what classes your files need in order to deploy. The
.dar file also includes this list of classes, as well as the
locations of the classes.

- g Add debug information to output files so they can be
debugged.

-gl Adds line number information to .class files. This helps
you to easily step through your code.

- help Prints help on compiler switches.

Switch Description
5-8

Compiling your Java program
-j codepage Override the system codepage default. Asian language
character sets include double-byte characters, where
certain prefix bytes mean that the following byte forms
part of the character. Asian language characters can appear
in “ “ strings, in “ character literals, and in comments.
The codepage guides the compiler in converting from the
ASCII character set used in the source java files into
Unicode.

The compiler normally uses the system default codepage
as a guide for translating double-byte character sets.
However, this can be overridden with the j switch. Some
common values are:

no -j — Use system default locale and codepage

-j.932 — Japanese

-j.936 — Chinese

-j.949 — Korean

-j C — Use “C” locale

-noinline The O (optimize) switch will normally enable function
inlining. To have optimization without function inlining,
use the noinline switch. Inlining means that Visual Cafe
takes a function’s code and embeds it in the calling
function instead of calling the function. Inlining increases
execution speed but also increases executable size.

-nowarn Turn off warnings.

-nowrite Compile to look for errors, but do not write out any files.

-O Optimize.

-verbose Display progress reports as compilation progresses.
Without this option, messages are reported once per
source file. With this option, additional messages are
produced that specify the number of milliseconds to parse
each Java source file.

Switch Description
5-9

Chapter 5: Compiling and Deploying Your Project
Javadoc-related switches

Some switches are specific to using the Javadoc utility. The -classpath ,
-verbose , and -nowrite switches, as described in the preceding table,
also apply to the Javadoc utility.

Use the -nowrite switch to generate only HTML and no class files.

For more information about Javadoc, see “About Javadoc” on page 4-59.
Also see the Sun Microsystems Javadoc home page at
http://java.sun.com/products/jdk/javadoc/index.html .

The following command-line options apply only to Javadoc features:

-xdepend
filename.dep or
filename.dar

Generate dependency information to stdout that’s
compatible with javac . Pass in a file name with either the
.dep or .dar extension into which the information goes.
The .dep file is a list of classes that you need to have in
order to run the program. The .dar file also includes this
list of classes, as well as the locations of the classes.

Switch Description

-Javadoc Enable Javadoc to produce HTML documentation. This
switch is unique to SJ.

-public Include only public classes and members.

-docdir dir dir specifies the destination directory where Javadoc
stores the generated HTML files, also called the HTML
Documentation output directory. The directory can be
absolute or relative to the current working directory. The
default is the api directory for new projects in Visual
Cafe. When used from the command line, the default is
the current directory. This switch is unique to SJ.

-systemdocdir dir dir is the HTML System Documentation directory. This
will default to VisualCafe\java\docs . Use this
option to work out the relative links that are generated
for referencing the system documentation. This switch is
unique to SJ.

-noauthor Omit the information specified by the @author tag,
which is included by default. This switch is unique to SJ.

Switch Description
5-10

Compiling your Java program
-noversion Omits the information specified by the @version tag,
which is included by default. This switch is unique to SJ.

-includesystem Generate documentation for all imported classes,
including links to the system documentation directory for
packages beginning with java.* , sun.* , and com.* .
However, if the documentation directory and system
documentation directory are the same, then full
documentation is generated for these packages as well.

-index Generate the package index (AllNames.html), which
is not produced by default. AllNames.html is an index
of all fields and methods. Packages.html is also
generated; it lists all of the packages and has links to
other HTML files that list the classes in each package. If
the system and project Javadoc directories aren’t in the
same location, the links are generated relative to the
system directory; otherwise, all information is copied into
the Javadoc directory, including the graphics files.

-splitindex Split the index file into smaller parts. Visual Cafe splits
AllNames.html into individual index files, index-
B.html through index-Z.html and AllNames.html
for A; index-Other.html is for items beginning with
an underscore (_). You can choose this option only if
you’ve specified to generate the index files. This switch is
unique to SJ.

-tree Generate the class and interface hierarchy, which is not
produced by default. Visual Cafe generates tree.html ,
which is a class hierarchy display with links to the class
documentation. packages.html is also generated (by
default); it lists all of the packages (including the Default
package) and has links to other HTML files that list the
classes in each package. If the system and project
Javadoc directories aren’t in the same location, the links
are generated relative to the system directory; otherwise,
all information is copied into the Javadoc directory,
including the graphics files.

-public Include only public classes and members.

-protected Include only protected and public classes and members.
This is the default.

Switch Description
5-11

Chapter 5: Compiling and Deploying Your Project
Native Win32 switches

This section lists the command line options that apply only to native
applications and DLLs (not available in Visual Cafe Standard Edition).
Either the obj or link switch is required; the rest are optional.

The command line options are as follows:

-package Include only package, protected, and public classes and
members.

-nodeprecated Excludes paragraphs with the @deprecated tag.

Note: Turning off deprecated warnings can help to speed
up build times for large projects because the processing
of Javadoc comments is skipped.

Option Description

-obj Generate native x86 object files.

-link
outputname

Link generated object files into outputname.[exe|dll] . This
command supplies the same functionality as the obj switch,
and runs the linker as well.

-main
mainclass

Specify the main class for the native executable. mainclass is a
fully qualified class name. (If no main switch is specified, it will
default to outputname.)

-W Generate Windows-only executable (no console).

-g Add debug information to output files so that the result can be
debugged. Debug information is in CV4 format, so you can use
it with debuggers other than the Visual Cafe debugger.

-export
package| class

Specify classes or packages to be exported from the DLL, so
they are accessible from other executables. package| class can
be either a fully qualified class name or a package specification
(for example, java.awt.*).

-g6 file.tdb Add debug information to output files so the result can be
debugged. Use file.tdb as the debug “type database” file. This
is the format you should use to debug in the Symantec Visual
Cafe environment.

-5|-6 Generate Pentium (p5) or Pentium Pro (p6) code.

Switch Description
5-12

Compiling your Java program
Environment variables

SJ uses the following environment variables, either set at the console
command-line prompt or in the SC.INI file:

How SJ searches for programs

To search for programs, SJ first searches in the directory where SJ.exe
was found. If the programs are not found there, the PATH is searched.

How SJ searches for imports in SC.INI

SJ looks for the imports your program requires through the CLASSPATH or
PATH settings. It’s important that SJ find the correct imports if you want
your build to be correct.

SJ looks in the folder where sj.exe resides for the SC.INI file. SC.INI
is a text file that contains environment variable settings that are similar to
settings you might find in AUTOEXEC.BAT:

;Comments are lines where the first non-blank character

; is a ';'

[Environment]

-profile Do performance profiling.

-L/ switch Pass / switch to the linker. To see the valid options, type
link /? .

- file.lib Link in the library file. Used with the link switch.

- file.res Link in the resource file. Used with the link switch.

- file.def Link in the module definition file. Used with the link switch.

Variable Description

CLASSPATH A semicolon-separated list of paths (similar to the PATH
environment variable) where SJ looks for classes. The default
CLASSPATH is the current directory. This can be overridden
using the classpath switch.

PATH Search path for executable files if they are not found in the
same folder where SJ resides.

Option Description
5-13

Chapter 5: Compiling and Deploying Your Project
CLASSPATH=C:\VisualCAFE\BIN

;Note that %PATH% gets replaced by the previous value of

; the environment variable PATH.

PATH=C:\VisualCAFE\BIN;%PATH%

The special environment variable @P is replaced with the path to the
SC.INI file. For example, the previous lines can be replaced with the
following lines if SC.INI is in C:\SC\BIN :

[Environment]

CLASSPATH=%@P%..\LIB

PATH=%@P%..\BIN;%PATH%

This makes the settings in SC.INI independent of where the SJ directory
tree is installed.

If SC.INI isn’t there, no error results. This feature helps you avoid
cluttering up AUTOEXEC.BAT with environment variable settings. It also
makes running SJ independent of any existing environment variables set
for other tools.

The environment settings in SC.INI do not prefix, augment, or append
any existing settings in the environment. They replace the environment
settings for the duration of running the IDDE or the compiler. For example,
to use SC.INI to append a CLASSPATH path to the existing CLASSPATH
path, you can use:

[Environment]

CLASSPATH=%CLASSPATH%;C:\VisualCAFE\LIB

Viewing compiler messages

When an error or warning occurs while the compiler compiles or
recompiles a source code file, Visual Cafe displays the compiler’s message
in the Messages window. The Messages window lists compilation errors
and warnings for all files in a project.

Each error or warning is displayed on two lines: the first lists the file and
line number where the error or warning occurred, and the second gives
the message itself.

The most recent messages are displayed at the bottom of the list. If a file
that had errors or warning messages is recompiled, the existing messages
5-14

Compiling your Java program
are deleted from the window and any new messages are added at the end
of the list.

The Messages window opens automatically any time errors are detected
during compilation. You can also open the window by choosing Messages
from the View menu. The contents of the Messages window are saved
when the window is closed and are displayed again when the window is
next opened.

Compiler errors

A compiler error occurs when the compiler does not understand a portion
of your source code. Even in the simplest program, it’s easy to write code
that will result in a compiler error.

There is a difference between compiler errors and programming errors. For
example, if source code fails to compile successfully, you have a compiler
error. If the source code compiles successfully but does not run as you
expect, you have a programming error. It is possible for a program to
compile successfully and still not run. To fix the logic of your program to
get it to run the way you want, you must debug the program (for details,
see Chapter 6, “Debugging Your Program”).

The most common compiler errors result from improper syntax. The
compiler can only understand source code that has been formatted
correctly. Some of the most common mistakes are:

◆ Misspelled words (keywords, methods)

◆ Missing or incorrect separators (periods, braces, semicolons)

◆ Improper use of case (capitalization)

One compiler error can generate multiple error messages. For example,
you could misspell the name of a method that you call from your program.
Although you misspelled it only once, your program may reference the
misspelled method many times. The result is multiple compiler errors from
a single typing error.

Sometimes the compiler error message will indicate exactly what caused
the problem. At other times, you may have to inspect the troublesome line
of code character-by-character to locate the source of the problem.
5-15

Chapter 5: Compiling and Deploying Your Project
Using Visual Cafe to locate compiler errors

When the compiler encounters an error in the source code, the error is
displayed in the Messages window (see “About the Messages window” on
page 6-5 for details). Double-click the error message to jump to the line
that contains the error. The error is highlighted in the Source window. The
integration between the Messages window and the Source window saves
you from searching through every line of your code to find an error.

Specifying whether builds are debug or final

You can specify how you want to compile your Java code, either for a
debug build or for a final build.

By default, the compiler includes debug information for debug builds,
while no debugging information is included and Java optimizations for
speed and compactness are performed for final builds. Debugging
information enables you to use all Visual Cafe debugging features when
you debug your Java programs, but makes the compiled code larger.

In the Project Options dialog box, the Compiler and Directories tabs show
the release type option sets. For more information on the options, see
“Setting compiler options” on page 5-57, “Specifying source-file search
paths for a project” on page 3-62, and “Specifying class-file search paths for
a project” on page 3-60.

To set the release type to debug or final:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.
5-16

Compiling your Java program
3 In the Project Options dialog box, click the Project tab (if it’s not
already active).

4 Select one of the following options:

You can change the default options for each type of release, as
described in the next procedure.

5 Click OK.

Option Description

Debug Builds an executable that contains debugging information.

Final Builds a more compact executable that is optimized and
contains no debugging information.
5-17

Chapter 5: Compiling and Deploying Your Project
The change takes effect the next time you compile your Java
program.

You can set two different categories of project-level options: one set of
options for debug builds, and another set of options for final builds.

To change options for debug and final releases:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Project tab (if it’s not already active).

4 Select either Debug or Final to be the release type.

5 Click the Compiler and Directories tabs and set the options for that
release type.

For more information, see “Setting compiler options” on page 5-57
and “Specifying source-file search paths for a project” on page 3-62.

6 Click OK.

The changes take effect the next time you compile your Java
program.

Specifying whether to parse imports

Visual Cafe ships with the standard Java package imports from the Sun
Microsystems Java Development Kit (JDK) in a preparsed form. These
imports might be required by applets and applications in order to execute.

By default, if you import other packages (including the Symantec
packages), Visual Cafe will parse them so you can, for example, look at
them in the Class Browser, view them in the Project window, and see them
in the Form Designer, if applicable. Not parsing imports requires less
computer resources and makes Visual Cafe run faster. You might want to
disable import parsing if, for example, you import a lot of third-party
packages and your computer runs very slowly as a result of the parsing.

To specify whether to parse imports:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.
5-18

Compiling your Java program
4 Select Parse imports to specify that imports be parsed automatically
as you work with the project. Or deselect it to not parse these
imports.

5 Click OK.

The change takes effect immediately if you select the option. If you
deselect the option, no more imports are parsed.

Specifying whether to clear messages before a build

By default, Visual Cafe clears the Messages window before each build. This
makes it easier to see what messages apply to the current build. However,
you can specify that the window not be cleared so you can see messages
from previous builds and compare build messages.

To specify that the Messages window not be cleared before each
build:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

3 In the Project Options dialog box, click the Project tab.

4 Select Clear Messages window before build to clear the Messages
window before each project build. Deselect this option to not clear
the window.

5 Click OK.

The change takes effect the next time you compile your project.

Specifying the output folder for a project

You can specify where Visual Cafe stores compiler output files, such as
class files, for the current project. You can also specify the system Javadoc
folder and the project documentation folder. For more information on
Javadoc, see “About Javadoc” on page 4-59.

Note: The default output folder is now the project folder. Previous versions
of Visual Cafe generated class files in the project folder, whereas now they
are generated in the source folder.
5-19

Chapter 5: Compiling and Deploying Your Project
For example, imagine that you have your project located in a folder
c:\projects . Within that folder you have a package called source , and
this package contains your source files (c:\projects\source). In
previous versions of Visual Cafe, your compiled class files would be
generated in the project folder (in this case, c:\projects). Now your
compiled class files are generated in your source folder (in this case,
c:\projects\source). So, if you were compiling a source file called
althea.java , the old path to the class file would be
c:\projects\althea.class , whereas now it would be
c:\projects\source\althea.class .

Note: When you run a project in the AppletViewer, the output folder is
temporarily added to the class path.

To specify the output folder for a project:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Directories tab.
5-20

Compiling your Java program
4 In the list under Show directories for, choose Output files.

The output directory appears. If no output directory is specified,
Visual Cafe uses the default: a .class file is placed in the same
location as the corresponding .java file. If you do specify an output
folder, all output files are placed in this folder and any package file
hierarchy structures are created as well.

5 Type a folder and full path in the field, or select a folder by
clicking the Browse button (...) that appears in the field.

6 Click OK.

The change takes effect the next time you compile your project.
5-21

Chapter 5: Compiling and Deploying Your Project
Using different Java virtual machines in Visual Cafe

Visual Cafe lets you use different Java virtual machines (Java VMs) so you
can execute, compile, and debug with them from within the Visual Cafe
environment. Note that the internal virtual machine used by Visual Cafe
(for the Form Designer, for example) continues to be the default virtual
machine supplied with Visual Cafe.

Caution: If your project’s imported class files do not match the JDK
version used by the virtual machine, your virtual machine can crash during
debugging with a debugger supported by the Visual Cafe environment. If
so, you can deselect the Supports Direct Debugging option, and optionally
specify another debugger for the VM Other Debugger Executable parameter.
In this case, when you choose Run in Debugger from the Project menu, Visual
Cafe simply executes the Java program in the virtual machine you
specified; if you specified an alternate debugger, it launches the debugger
as a separate process.

To access the Environment Options Virtual Machines view:

From the Tools menu, choose Environment Options, and select the
Virtual Machines tab.

To choose a virtual machine:

1 Choose the virtual machine from the drop-down list.

2 Click OK in the Virtual Machines view.

The change takes effect immediately.

To add a new virtual machine:

1 Click New.
5-22

Compiling your Java program
The Virtual Machines Settings dialog box displays.

2 Specify the parameters you want. To specify a parameter, choose
an option from the String property to set drop-down list box. Only
the VM name and the VM executable parameters are required, and it
is recommended that you also supply a VM JDK Source Path.

Parameter Description

VM name A unique name you use for the virtual
machine.

VM manufacturer The name of the creator of the virtual
machine. Currently used for informational
purposes only.
5-23

Chapter 5: Compiling and Deploying Your Project
Compiler classpath Location of the files your program depends on
for compilation (for example, the class files for
JFC/Swing components). The compile class
path is appended to the class path for the
project. If the Compile Classpath field is left
blank, the class path specified in the sc.ini
file is used.

Note: You need to add symbeans.jar to
this class path if you use Symantec Beans.
Otherwise, your source files might not
compile. If you specify a virtual machine that
does not support JAR files (such as the
Microsoft virtual machine), you need to unjar
symbeans.jar and add the directory
location to the class path.

Use VM executable (fully
specified path of the VM
executable)

The virtual machine executable and the path
to it.

Classpath specifier (VM
executable classpath prepend
string)

Command-line specifier for the class path,
usually -classpath . The Microsoft virtual
machine may use /cp:a (or /cp:p or /cp).
Specify the class path in the VM Executable
Classpath field.

Classpath (classpath for use by
the VM executable)

The class path to be appended to the VM
Executable Classpath Prepend String parameter.

Note: You need to add symbeans.jar to
this class path if you use Symantec beans.
Otherwise, you might get Runtime Class Not
Found exceptions during execution. If you
specify a virtual machine that does not
support JAR files (such as the Microsoft virtual
machine), you need to unjar symbeans.jar
and add the directory location to the
classpath.

Parameter Description
5-24

Compiling your Java program
VM path The search path for preparsed JDK
information and a Javadoc executable.

Visual Cafe ships with the standard Java
package imports from the Sun Microsystems
Java Development Kit (JDK) in a preparsed
form (the files jdk.ve2 and jdk.vep in the
Bin directory). This information is used by
Visual Cafe while you are programming in its
environment (for example, so you can view
the JDK in the Class Browser, Project window,
and Form Designer).

The JDK version used by a virtual machine
might be different than that supplied with
Visual Cafe. In this case, you want to supply
the correct version of the JDK in preparsed
form.

If there is no preparsed information in the VM
path, Visual Cafe asks if you want to initiate
preparsing; if you do not, the default
preparsed information present in the Visual
Cafe environment is used. If you preparse, the
jdk.ve2 and jdk.vep files are stored in the
VM path location.

If you do not specify anything in the Javadoc
Executable field, Visual Cafe searches for this
executable on the VM path. If the executable
is not found, the default javadoc.exe is
used.

Other command options (other
execution options for the VM)

Other command-line options.

Use debugger executable The executable name and path to an alternate
debugger that is used when the Supports Direct
Debugging option is not selected.

Javadoc executable The executable name and path to a Javadoc
tool. If you do not specify anything in the
Javadoc Executable field, Visual Cafe searches
for this executable in the VM path. If the
executable is not found, the default
Javadoc.exe is used.

Parameter Description
5-25

Chapter 5: Compiling and Deploying Your Project
3 In the Advanced VM Parameters area, specify the options that you
want.

VM’s JDK source path The root of the source files for the JDK your
virtual machine uses. You should specify this
parameter, or you might have duplicate
information in the Class Browser for the JDK
classes.

Parameter Description

Supports direct debugging Select this option if this virtual machine can be
used with a debugger currently available from
the Visual Cafe environment. Then specify the
debugger you want in the Run In Debugger field.

If you deselect the Supports Direct Debugging
option, when you choose Run in Debugger from
the Project menu, Visual Cafe simply executes the
Java program in the virtual machine you
specified. You can optionally specify another
debugger in the Use Debugger Executable field. In
this case, when you run in the debugger, Visual
Cafe launches the debugger as a separate
process.

When you choose Run in Debugger from the
Project menu, and the Supports Direct Debugging
option is deselected, you receive a dialog box
that lets you specify options for the debugger:
specifically, the password for connecting to the
virtual machine. The password is generated
automatically by the virtual machine and is
unique every time you run the virtual machine.
The password appears in the Messages window.

Parameter Description
5-26

Compiling your Java program
4 Click OK in the Virtual Machine Settings dialog box, then click OK
in the Virtual Machines view.

The change takes effect immediately.

To edit the settings of a virtual machine:

1 Choose the virtual machine from the drop-down list.

2 Click Modify.

3 Specify the options you want.

4 Click OK in the Virtual Machine Settings dialog box.

The change has been made.

5 When you’re finished making changes, choose the virtual machine
you want to use from the drop-down list in the Virtual Machines
view, then click OK.

To remove a virtual machine:

1 Choose the virtual machine in the drop-down list, then click
Delete.

2 Click OK.

The change takes effect immediately. Note that you cannot remove
the virtual machine that was specified when you launched Visual
Cafe.

Run in debugger The debugger that is used when the Supports
Direct Debugging option is selected. This list of
debuggers is the same as those listed in the
project options for applets.

If you specify the default value and run an
application, the AppletViewer is used. If you
specify Netscape Navigator and run an
application, Visual Cafe instead uses the default
virtual machine.

If you specify the default value and run an
applet, the virtual machine specified in your
project options is used; otherwise, the virtual
machine specified in your project options is
ignored.

Parameter Description
5-27

Chapter 5: Compiling and Deploying Your Project
Setting internal VM environment options

From the Internal VM tab of the Environments Options dialog box, you can
enable, disable, and perform a stack trace on the Just-In-Time compiler
(JIT) of the internal virtual machine of Visual Cafe. In addition, you can set
the class path, Java heap, and stack size parameters here, instead of having
to edit the sc.ini file.

Note: Making changes in the Internal VM tab causes Visual Cafe to rewrite
your sc.ini file. Visual Cafe adds in the specified information, so existing
information is not lost.

Most changes that you’ll want to make to the sc.ini file you can do in
the Internal VM tab, but you can also manually edit the file yourself. For
more information, see “Setting environment variables in the sc.ini file” on
page 3-72. All changes that you set in the Internal VM tab can also be
specified in the sc.ini file.

Note: By default, Visual Cafe does not read the class path setting for
Windows, as specified in the autoexec.bat file. This is a change from
earlier versions of Visual Cafe. You can, however, add the setting yourself.
For more information, see “Inheriting the class path from the Windows
environment” on page 3-71.

The JIT in the VM converts Java bytecode to native machine code; the
machine code provides performance comparable to that of C or C++.
Turning on the JIT makes Visual Cafe run the fastest. However, when an
exception occurs, Visual Cafe returns to you the type of exception only,
and not where it happened.

Realize that disabling the JIT makes Visual Cafe run more slowly. More
importantly, when an exception is thrown, if the JIT is disabled you get a
full stack trace, including the exact location where the exception occurred
(file, class, and line number).

Turning on the stack trace means that the JIT is still enabled, but Visual
Cafe runs a little more slowly. When an exception occurs, you get the same
information as when the JIT is disabled, but without the file name and line
number.
5-28

Compiling your Java program
Note: You need to restart Visual Cafe for the changes made in the Internal
VM tab to take effect.

To open the Environment Options Internal VM view:

Choose Environment Options from the Tools menu, then click the Internal
VM tab.

To enable, disable, or perform a stack trace on the JIT:

1 In the JIT list in the Internal VM view, choose Enable, Disable, or
Stack Trace.
5-29

Chapter 5: Compiling and Deploying Your Project
2 Click Apply or OK to save the change.

You need to restart Visual Cafe for the change to take effect.

To set the class path:

1 In the Internal VM view, modify the class path list as needed:

❖ To change the order in which directories are searched, select a
directory and move it with the Up Arrow or Down Arrow buttons.

❖ To delete a directory from the list, select the directory and click
Delete.

❖ To add a directory to the list, select the blank entry (marked by
an empty box) at the bottom of the list and type the directory
name, including the full path. Or, click the New button (located
above the text box), then select a directory by clicking the
Browse button (...) that displays in the field. You can also use
the New button to insert a new entry above the selected entry.

Tip: You can specify environment variables, such as
%CLASSPATH%, by choosing a directory and editing it.

2 Click Apply or OK to save the changes.

You need to restart Visual Cafe for the change to take effect.

To set heap and stack size parameters:

In the Internal VM view, modify variables as needed. (Instead, you
could modify the sc.ini file.)

Field Description Variable in sc.ini

Maximum Heap The maximum Java heap size (also called the
memory allocation pool or garbage collected heap)
for the internal VM. A larger value means that Visual
Cafe runs faster and with fewer issues that can result
from a small heap size. (Default: 32 MB; Minimum:
1000 bytes or Initial Heap Value, whichever is
greater.)

VCAFE_IVM_mxn

Maximum Java Stack The maximum Java stack size for any thread.
(Default: 400 KB; Minimum: 1000 bytes.)

VCAFE_IVM_ossn
5-30

Deploying your project
Note: The value (n) is in bytes. Append a k to specify kilobytes or an m for
megabytes.

Deploying your project

You can easily deploy applets and applications in JAR, CAB, or ZIP files, or
to a directory. A CAB file is a single file created to hold a number of
compressed files, for use in Microsoft program development. Whether
you’re deploying to a JAR, CAB, ZIP, or directory, you’re deploying to a
deployment target. Use Visual Cafe’s deployment features to simplify
your deployment process. You can also easily figure out what class files
your program needs, as well as configure a Web server where you’ll put
your files.

When you deploy to a deployment target, Visual Cafe will do so despite
any compiler warnings.

The topics in this section include:

◆ Deploying your applet

◆ Deploying your application

◆ Configuring UNIX-based Web servers

For information on deploying native applications or DLLs, see “Linking
native Win32 applications” on page 11-4, and “Registering DLLs using
SNJREG” on page 11-19.

Initial Heap The initial Java heap size (also called the memory
allocation pool or garbage collected heap), which
affects how much memory is taken from your
operating system at startup. (Default: 4 MB;
Minimum: 1000 bytes; Maximum: Maximum Heap
value.)

VCAFE_IVM_msn

Maximum Native Stack The maximum native stack size for any thread (the
stack size is sued by C code). (Default: 128 KB;
Minimum: 1000 bytes.)

VCAFE_IVM_ssn

Field Description Variable in sc.ini
5-31

Chapter 5: Compiling and Deploying Your Project
Note: You cannot deploy Swing components along with AWT-based
components in the same archive file. To deploy Swing programs, you need
to separately provide swing.jar . This will prevent your archive files from
getting too large. For more information on using Swing in Visual Cafe, see
Chapter 8, “Working with JFC/Swing Components.”

Deploying your applet

After you complete an applet in Visual Cafe, you’re ready to deploy it on a
Web site. This section provides some general guidelines for deploying
applets; you need to know how your particular Web site is set up to get
your applet up and running. Because your project can contain more than
one applet that appears in related Web pages, these guidelines are for
setting up a project that contains one or more applets.

Caution: The classes needed by Visual Cafe components are stored in
symbeans.jar , symtools.jar , and sfc.jar . You do not want to
deploy using symbeans.jar , symtools.jar or sfc.jar , because it
will affect the size and performance of your applets. Instead, you want to
deploy using just the classes needed by the components in your applets.

symbeans.jar , symtools.jar and sfc.jar contain Beans by
Symantec; symbeans.jar contains the older AWT-based Beans, and
sfc.jar contains the newer and preferred Swing-based Beans. We
recommend that you use sfc.jar rather than symbeans.jar , but for
now Visual Cafe still needs both in order to work properly. sfc.jar also
contains some useful generic, non-Bean classes that aren’t tied to Visual
Cafe. symtools.jar contains some useful command-line utilities.

Netscape Communicator/Navigator (with or without the Java plug-in),
Internet Explorer 4.0 (with or without the Java plug-in), and all versions of
HotJava support the archive HTML tag.

To deploy your applets in a JAR, CAB, ZIP, or directory:

1 Use the Project menu’s Deploy command to create an archive, such
as a JAR, ZIP, or CAB file, that contains your applets and all
supporting files, including Symantec class files. See “Adding
external files to a JAR” on page 5-55 for more information.
5-32

Deploying your project
Tip: Your applets should use relative URLs for graphics files so
you can easily move your applets to different computers.

2 Add the variable ARCHIVE="name.jar" or " name.zip" to the
applet tags in your HTML files. You can specify multiple JAR files
by delimiting them with a comma. If you’re using CAB files, make
sure you use the correct tag for Internet Explorer.

If you’re deploying to a directory, you don’t need to perform this
step.

Note: Not all Web browsers support multiple JAR files; however,
the most recent version of Netscape Communicator/Navigator,
Microsoft Internet Explorer, and Sun Microsystems HotJava do
support multiple JAR files.

Tip: Remember that the applet tags specify where your applets are
located relative to the location of the HTML files. Therefore, you
must place the archive file in the same relative location.

3 On your local computer, test your Web pages by opening them in
a Web browser from outside of the Visual Cafe environment.

4 Put your archive file and HTML files in a directory on the Web
server, as they appeared in your Visual Cafe project directory.

5 After you’ve completed the setup of your Web site, test your Web
pages from remote computers.

You can also test your applet with different operating systems and
Web browsers.

Deploying your application

After you complete an application in Visual Cafe, you’re ready to deploy it.

Mainly, the difference in deploying an application, as compared to an
applet, is that you have to make sure that the associated JAR file is in your
class path, and that you run your application outside of Visual Cafe
differently than you would an applet. Also, with an applet you have to
specify an HTML file and the associated HTML tags — you don’t have to do
this when deploying an application.
5-33

Chapter 5: Compiling and Deploying Your Project
For information about deploying native applications, see “Deploying native
Win32 applications, DLLs and libraries” on page 11-5.

Requirements for different applications vary. However, some general
guidelines are provided below.

To deploy your application in a JAR, CAB, ZIP, or directory:

1 Use the Project menu’s Deploy command to create a JAR file
containing your application and all supporting files, including
Symantec class files. See “Adding external files to a JAR” on
page 5-55 for more information.

Tip: Your application should use relative URLs for graphics files so
you can easily move your application to different computers.

2 On your local computer, test your application by running it from
outside the Visual Cafe environment.

To start your application, the JAR file must be in the class path, as set
in the sc.ini file. You can set your Visual Cafe class path in the
Environment Options dialog box; for more information, see “Setting
internal VM environment options” on page 5-28.

Then you can run your application:

java application-name

java invokes java.exe and, if necessary, includes the complete
path (for example, \visualcafe\java\bin\java) . Your
application name is the same as the name of the frame for the main
application window, without the .class extension; note that the
name is case-sensitive and you might need to include the complete
path.

For example:

set classpath=%classpath%;Amazing.jar

\visualcafe\java\bin\java AmazingTour

3 Test your application from remote computers.

You can also test it with different operating systems.

Note: You need to provide — or your users need to obtain — the
Java Virtual Machine and standard Java class files. The Symantec
Java Virtual Machine must be licensed from Symantec.
5-34

Deploying your project
Configuring UNIX-based Web servers

The following instructions for system administrators are guidelines only;
they’ve been tested with Apache. After the Web server is configured
correctly, all applets in the user’s home HTML directory will have access to
the Visual Cafe classes.

Caution: The classes needed by Visual Cafe components are stored in
symbeans.jar , sfc.jar , and symtools.jar . You do not want to
deploy using symbeans.jar , sfc.jar , or symtools.jar because it
will affect the size and performance of your applets. Instead, you want to
deploy using just the classes needed by the components in your applets.
These classes can be packaged in a JAR file or not.

To configure a UNIX-based Web server:

1 Create a UNIX directory, such as /home/symantecclasses .
Make sure all users have read access to the directory.

2 Expand symbeans.jar , preserving the directory structure, and
copy it to this UNIX directory.

For more information, see “Expanding a JAR file” on page 5-56.

3 Create a symbolic link from /home/symantecclasses/
symantec to the user’s home HTML directory. For example:

ln -s /home/symantecclasses/symantec

/home/joeuser/public_html

joeuser can now run applets from Web pages without copying the
full Symantec class structure to his public_html directory.

If you have the Visual Cafe Database Edition, see the Visual Cafe
Database Developer’s Guide for more information.

Deploying from the command line

You can deploy your programs from the command line using the
com.symantec.itools.tools.archive.Archiver utility. You can
run this program on any operating system, since it’s written in Java. This is
useful if you want to make use of Visual Cafe’s deployment tools outside of
the Visual Cafe environment, or if you’re deploying from another operating
system. With the Archiver tool, you can deploy to JAR files, CAB files, ZIP
files, or directories.
5-35

Chapter 5: Compiling and Deploying Your Project
Note: When using the Archiver tool to deploy, you’ll deploy files to a local
machine; with this tool you cannot deploy by way of FTP.

The source code for the archiver is included so that users can modify or
subclass based on their particular requirements. The Archiver tool provides
a simple wrapper around JAR, CAB, and JAVAKEY executables, thereby
gathering all settings for deployment into one tool. The architecture is also
extensible so that you can add new Archive types (for example, tar.Z
support). The Archiver also has a programmatic API so it can be
embedded into your applications that need to create archives. Using the
Archiver tool is also helpful in case you’re doing automated builds, so that
you don’t have to open Visual Cafe in order to create a deployment target.

To deploy to a JAR, ZIP, CAB, or directory by using the command-line
Archiver tool:

1 Figure out what files or entries in the CLASSPATH will make up
the contents of the deployment target.

2 Copy all of the files and entries to a temporary directory.

3 Run the Archiver tool to create the deployment target.

To use the Archiver tool by starting with a generated response file:

1 In Visual Cafe, deploy to an archive or directory (if deploying to a
JAR, then generate a manifest file). For more information, see
“Setting the archive type, signer tool, and protocol” on page 5-40.

Select the option to create a response file. For more information, see
“Setting advanced deployment options for a project” on page 5-51.

2 Modify the response file with options for the Archiver tool.

3 Run the Archiver tool with the response file. For example, at the
command line, you’d type the following:

com.symantec.itools.tools.archive.Archiver
@responsefilename.rsp .
5-36

Deploying your project
Setting command-line archiving options

The following are the options that you can use to configure the command-
line archiving tool:

Option Description

-help Displays information on all command-line archiving
options.

-type [jar | zip|
cab| dir]

Specifies the type of deployment target to be
created. Currently, JAR, ZIP, CAB, and directory are
supported.

-out filename Specifies the location of the resulting deployment
target.

-tempdir directoryname Specifies the location of the temporary directory to
store the files that make up the archiver. This
location is used by the Archiver tool to make the
deployment target.

-classpath
{[directoryname |
jarname | zipname |;
...}

Specifies the CLASSPATH to search for entries. This
can be a list of JAR files, directories, or ZIP files,
and each item is separated by a semicolon (;).

-files { filename, ...} Specifies a list of files to be archived, and each file
is separated by a space. For example,
c:\projects\file.gif .

-entries { entryname,
...}

Specifies a list of entries on the CLASSPATH that are
to be archived. These entries are individual files.
For example, you could specify java/lang/
Object.class.

-signer [sun] Specifies the signing tool to use, and its location.
Currently Sun is supporte d. For example, you
could specify c:\VisualCafe\Java\Bin.

-overwrite [true
|false]

If the file specified by -out exists, then it gets
overwritten. This prevents you from accidentally
replacing a deployment target. Also, this is useful in
case you are recreating a deployment target, and
thus want to replace a pre-existing one.

-debug [true|false] Logs any messages to the file specified by
-debuglog .
5-37

Chapter 5: Compiling and Deploying Your Project
Here is an example of commands you would type to use the command line
archiving tool:

java com.symantec.itools.tools.archive.Archiver -type jar
-out c:\temp\foo.jar -tempter C:\temp\jardir -overwrite
true -JA "-cf0m c:\temp\foo.jar c:\temp\foo.mf *.*" -signer
sun -JS "-gs c:\temp\signing_directive c:\foo.jar"
-suntools c:\VisualCafe\java\bin\ -entries mypackage/
JApplet1.class

This example creates a JAR file called foo.jar in the c:\temp directory,
uses c:\temp\jardir as the working, temporary directory, will
overwrite foo.jar if it already exists, passes -cf0m
c:\temp\foo.jar c:\temp\foo.mf *.* to Sun’s command-line JAR
tool, signs the JAR using Sun’s signing tool, passes -gs
c:\temp\signing_directive c:\foo.jar to Sun’s signing tool,
indicates that Sun’s tools are located in the c:\VisualCafe\java\bin
directory, and includes the mypackage/JApplet1.class entry from
the class path.

Setting deployment options

After you complete an applet or application in Visual Cafe, you’re ready to
deploy it. You can specify deployment-related options from the

-debuglog filename Specifies the file to log messages to.

-mstools directoryname Specifies the directory where the CAB tool
(CABARC.exe) is located.

-suntools directoryname Specifies the directory where the JAR.exe and
JAVAKEY.exe are located.

-JA “ list of tool specific
arguments”

The command line specific to the archiver tool
being used. Enter in arguments (in quotes) that
work with the specified archiver tool.

-JS “ list of tool specific
arguments”

The command line specific to the signing tool being
used. Enter in arguments (in quotes) that work with
the specified signing tool.

@ [responsefilename] A file that contains some or all of the command line
options listed above. This is helpful in case you
want to keep some of your settings each time you
use the Archiver tool.

Option Description
5-38

Setting deployment options
Deployment tab of the Project Options dialog box; these options affect
deployment on a per-project basis.

You can also set deployment options that affect all projects. For more
information, see “Setting deployment options for all projects” on page 5-52.

Setting deployment options for a project

You can specify deployment options for a project (discussed in this
section), or for all projects. For more information, see “Setting deployment
options for all projects” on page 5-52.

Use the Deployment tab in the Project Options dialog box to set
deployment options for a single project. The project-level deployment
options are divided into five sections: General, Files, Archiver, and
Advanced. You can see these in the Deployment Category drop-down list
box in the Deployment tab.

You can set the following project-level deployment options:

◆ Setting the archive type, signer tool, and protocol

◆ Specifying what files to include in your archive or directory

◆ Setting archiver options for JAR files

◆ Setting archiver options for CAB files

◆ Setting advanced deployment options for a project

These tasks are covered in this section.
5-39

Chapter 5: Compiling and Deploying Your Project
Setting the archive type, signer tool, and protocol

When you select the deployment category of General in the Project Options
dialog box, the Deployment page displays, as shown here:

The General option allows you to specify the most frequently-used
deployment options that apply to a project

Signing allows the user to alter the permissions that a Java applet can have
on the user’s system. Signing is currently available with tools from Sun
Microsystems. For details, see Sun Microsystems’ documentation.

The user will need to set up program-specific information, such as the key
and signer. The tool needs to work from the command line before it will
work in the environment.
5-40

Setting deployment options
To set the archive type:

1 Under the Types field, select the type of archive you want to
deploy to. Available choices include JAR, ZIP, Directory, or CAB.

CAB files are only available if you’ve specified them as an option for
all projects. For more information, see “Setting deployment options
for all projects” on page 5-52.

2 If the archive can be signed you can choose from a list of available
signers.

Available signers are specified in the Environment Options dialog
box. For more information, see “Setting deployment options for all
projects” on page 5-52.

3 Select the protocol by which the archive will be deployed. You can
deploy by way of FTP, or by way of the file protocol.

If you’re deploying to your local machine, select File as the protocol.
If you’re deploying to an FTP server, select FTP as the protocol.

The FTP option will only be available if you’ve specified it in the
Environment Options dialog box. For more information, see “Setting
deployment options for all projects” on page 5-52.

4 In the Options area, select the options you want.

Select this... To do this...

Compress Compresses the archive. This option is available
with JAR and CAB files.

Overwrite existing file Overwrites a previous version of the archive or
directory

Add to Component Library Any JavaBeans that are deployed are also added
to the Component Library.
5-41

Chapter 5: Compiling and Deploying Your Project
Create stand alone archive If this item is selected, Visual Cafe will deploy all
files that your project generates, plus any
additional files that are needed for the program
to run. Visual Cafe looks to the classpath
setting for these dependencies. The class path
information is generated from the setting in the
Environment Options dialog box (for more
information, see “Setting internal VM
environment options” on page 5-28), and also
from the setting for input files in the Project
Options deployment page (for more information,
see “Specifying class-file search paths for a
project” on page 3-60).

If you know that the machine you’re deploying
to has one or more of these dependencies, you
can explicitly remove them from the archive or
directory (for more information, see “Specifying
what files to include in your archive or directory”
on page 5-44).

If this item is not selected, the archive will be
deployed with only the class files that your
project generates, plus any other files that are in
your project (image, properties, or HTML files,
for example).

Select this... To do this...
5-42

Setting deployment options
5 In the Location area, specify the following information:

In the Directory field, specify the directory you want to deploy to.
Click the Browse button (…) to navigate to a directory.

In the File field, specify the file name of your deployed archive or
directory. Click the Browse button (…) to navigate to a file and
directory. If you specified the archive type of Directory, then this field
is not editable.

If you’re deploying by way of FTP, you need to specify the Host, Port,
User, and Password information. These fields are initially set with the
default FTP settings that are specified in the Environment Options
dialog box, but you can override these initial settings. For more
information, see “Setting deployment options for all projects” on
page 5-52.

Note: The FTP password that you use here is not secure.

6 Click OK.

Copy resources to the output
directory

If this item is selected, Visual Cafe will copy non-
class files to the same location as the archive,
thus outside of the archive. This only applies if
you use the RelativeURL class for these
resource files.

For deployment purposes, you want the ability to
move your program to another location and still
have files be found. The optimum method to do
this is to use the
getClass().getResourceAsStream(Reso
urceName) method. In code that Visual Cafe
generates, the RelativeURL class is used.

Both methods specify a file relative to the Java
program. For example, if Applet1 is in a Project
directory and graphics files are in an Images
subdirectory, specify just Images/ filename.

Unfortunately, RelativeURL doesn’t allow you
to access resource files inside of an archive. So
we provide this checkbox here to copy the
resources to the same location as the archive so
that the RelativeURL class can still find the
resource files.

Select this... To do this...
5-43

Chapter 5: Compiling and Deploying Your Project
The changes take effect immediately.

Specifying what files to include in your archive or directory

When you select the deployment category of Files in the Project Options
dialog box, the Deployment page displays:

Note: You cannot include symclass.zip , classes.zip , or
swingall.jar in your deployment target. These are provided in the
class path listing to reflect that they are listed in your class path. If you
must deploy swingall.jar , you must do so separately.

This class path listing
appears only if you selected
Create stand alone archive
in the General deployment
category page.

Here you can choose to
include or not include
certain archives or
directories, depending on
what your target machine
has installed.
5-44

Setting deployment options
If you know that the computer you’re deploying to already has one of the
archives listed, or if you’re deploying one or more of these archives
separately, you can choose to remove them from the current deployment
archive or directory.

You can explicitly remove entries (like jgl.jar) if you know that the
classes already exist on the target machine.

To manage files in an archive:

1 Open the Deployment page of the Project Options dialog box, and
select Files as the deployment category.

The Deployment Files page displays.

2 If you selected the Create stand alone archive in the General
deployment category page, then you’ll also see a listing of archives
listed in the class path.

(Optional) To include or remove archives in your deployment target,
select or deselect the checkbox in the Included column for each
archive.

3 To include or remove specific files in your deployment target, click
the Manage Archive Entries button.

The Manage Archive Entries dialog box displays, which lists all the
files that will be placed into the deployment target. You can choose
to remove entries and set their manifest properties (manifest is for
JAR only).
5-45

Chapter 5: Compiling and Deploying Your Project
To include a file in the deployment target, select the checkbox in the
Included column. Deselect the checkbox to exclude a file from the
deployment target.

The items in the Name and Package columns are provided for
information only; the information in these columns can’t be edited
from this dialog box.

The .java files in the project are included in this listing, but are
excluded from the deployment target by default. You can thereby
choose to include your source files in with your deployment target, if
you want.

4 (Optional) If a file is a Bean or is used only at design time, click
the checkbox in the appropriate column. Specify these settings
only if you’re deploying to a JAR file.

If you’re creating a JAR and would like to specify additional manifest
tags (other than JavaBean and Design-Time Only), you can do so by
providing your own initial manifest (see the following section,
“Setting archiver options for JAR files,” for more information).

Note: In order to add files to an archive you need to add the files
to the project. This does not include entries of subprojects.

5 When you’re done making changes to the file list, click OK.

Your changes to the deployment target’s file list are saved.

6 In the Project Options dialog box, click OK.

Your deployment options take effect immediately.

How Visual Cafe figures out what files your program needs

You can learn which class files you need by creating a JAR file with the
Visual Cafe Deployment project options or by using SJ.

Remember that when you deploy your project you need to keep the class
directory structure intact; in addition, you must use the same case in the
class names (class names are case-sensitive).

If you’re interested in how Visual Cafe figures out which files are used by
your program, read on. This information is provided for those of you want
to know the details; you don’t need to know this information in order to
deploy your programs.

The sj.exe utility enables you to easily figure out which class files are
used by your applet or application. After your Java applet or application is
5-46

Setting deployment options
finished, enter the following command at the DOS prompt (make sure that
\visualcafe\bin is in your path):

sj.exe -make -cdb mainclass.cdb -depend listname.dar
filename.java filename.java filename.java

Include the names of all Java files in your project.

listname.dar is the file where the list of classes used by your applet or
application and their locations will be generated. sj.exe also lists the
name of the archive file or folder (if any) where the class file was found.
This helps you figure out which class files you’d need to extract from each
class archive file used by your applet or application. The file name must
have a .dar extension.

Even though the standard java.* class files are logged in this file, you’re
not required to copy those to your Web server for your applets, as they’re
available with most Web browsers. For applications, the standard Java class
files are part of Java Runtime Environment, which you can download from
JavaSoft.

sj.exe takes additional command-line options, so you can add additional
class paths and so on. See “Compiling from the SJ command line” on
page 5-7 for more information.
5-47

Chapter 5: Compiling and Deploying Your Project
Setting archiver options for JAR files

If you’ve previously set the archive type to JAR in the General category of
the Project Options dialog box, when you select the deployment category
of Archiver, the Deployment page displays:

Set options in the Archiver deployment category to specify whether you
want to include a manifest in the JAR file, what you want to use as your
base manifest (assuming you have one), and whether you want to save the
generated manifest for use outside of Visual Cafe.

When creating a JAR, Visual Cafe uses the Sun JAR program, which is
included with Visual Cafe. Symantec provides a command-line utility
(com.symantec.itools.tools.Archiver) that allows you to easily
5-48

Setting deployment options
create archives on the command line (by way of make on a Solaris
machine, for instance).

You would specify an initial manifest to do the following:

◆ add tags other than Java-Bean and Design-Time-Only to an
entry

◆ add files to your JAR without having to add them to the project

You can specify your own manifest file if you want to add specify
additional tags. You might want to do this if you’re using this as a project
template.

If you supply an initial manifest, you can provide any information in that
manifest that you’d like, and Visual Cafe will merge the manifest
information that is generated into that file .

To specify manifest settings for a JAR:

1 Open the Deployment page of the Project Options dialog box, and
in the General deployment category make sure the deployment
category is set to JAR.

2 In the Deployment page of the Project Options dialog box, select
Archiver as the deployment category.

The Deployment Files page displays.

3 To include a manifest file with your JAR file, select Include manifest.

You need to include a manifest file if you’ve set flags, such as
JavaBean or Design-Time-Only.

4 To specify a manifest for Visual Cafe to start with, select Supply
Initial Manifest.

Enter the file name and path, or use the Browse button (…) to
navigate to the manifest file (*.mf).

5 To make Visual Cafe save the manifest file it generates, select Save
Generated Manifest.

Enter the file name and path, or use the Browse button (…) to
navigate to the path where you want the manifest file saved.

Note: If you’re using the command-line archiving tool, you must
have a manifest file.
5-49

Chapter 5: Compiling and Deploying Your Project
Tip: You can save a manifest the first time you create the JAR, then
modify the manifest file by hand, and then include it as your initial
manifest the next time you create the JAR.

6 Click OK.

The changes take effect immediately.

Setting archiver options for CAB files

If you’ve previously set the archive type to CAB in the General category of
the Project Options dialog box, when you select the deployment category
of Archiver, the Deployment Category page displays:
5-50

Setting deployment options
Here you can specify the ID of the CAB file. For more information, see
Microsoft’s documentation about CAB files.

Setting advanced deployment options for a project

When you select the deployment category of Advanced in the Project
Options dialog box, the Deployment Category page displays:

Here you can turn on the internal debug logging to help yourself debug
any problems that you are having. Then, if you can’t figure out what is
wrong, Symantec’s technical support team can use this information to
further assist you. If you don’t specify a name for the log file, the default
setting is outputdirectory\deployment.log .
5-51

Chapter 5: Compiling and Deploying Your Project
You can also choose to generate a response file. If you’re using the
command-line archiving tool, this file will provide you with the arguments
you need to run the tool.

Setting deployment options for all projects

To set deployment options for all projects, click the Deployment tab in the
Environment Options dialog box:

In the Deployment page, you can specify paths to tools that you’re using:

◆ If you’re using JARs, you need to specify the path to Jar.exe ; this
program is provided with Visual Cafe.
5-52

Setting deployment options
◆ If you’re using CABs, you need to specify the path to Cabarc.exe .

◆ If you’re using Swing components, you need to specify the path to
Swingall.jar ; this JAR is provided with Visual Cafe.

◆ If you’re deploying to an FTP site, you can specify the Host, Port, User,
and Password. This is the default setting for all projects.

Here are some URLs you might want to use to obtain the tools you’ll need.
(Remember that URLs are subject to change.)

◆ Sun security and signed JAR tools:
http://web3.javasoft.com/products/jdk/1.1/docs/
guide/security/index.html

◆ Microsoft SDK for Java 3.1:
http://www.microsoft.com/java/download.htm

Signing lets users alter the permissions that a Java program can have on
their computer. Visual Cafe includes the Sun tools in the \Java\Bin
folder.

Note: In order for Netscape Navigator/Communicator or Microsoft Internet
Explorer to be able process signed JAR files, you must install the Java Plug-
in for the respective browser. Visual Cafe does not currently support
signing specifically for Netscape Navigator or Microsoft Internet Explorer.

After you download and install the tools, you need to specify the Paths in
the Environment Options. You also need to set up any program-specific
information, such as the key and signer. Basically, the tool needs to work
from the command line before it will work in the Visual Cafe environment.

For information on setting deployment options for individual projects, see
“Deploying your project” on page 5-31.

To specify paths in Environment Options:

1 Choose Environment Options from the Tools menu.

The Environment Options dialog box appears.

2 Click the Deployment tab.
5-53

Chapter 5: Compiling and Deploying Your Project
3 Select Include Support for Sun or Include Support for FTP, then specify
the paths that you need by using one or more of the following
options:

4 Click Apply or OK to save the changes.

The changes take effect immediately.

About JAR files

JDK 1.1 supports two types of archives. The .zip file, which was also
supported in Java 1.0, is a basic archive format that simply appends
.class files together into one long file. The .jar format allows
compaction, encryption, and signing. It also extends the archive format by
allowing multiple file types to be included.

A Java Archive (JAR) file is an optionally compressed archive file that
complies with the JavaBeans standard. It is the primary method for
delivering JavaBeans components.

A JAR file contains one or more related Beans and any support files,
including classes, icons, graphics, and sounds. A JAR tool, called jar.exe
on Windows computers, archives and extracts JAR files and is provided
with JDK 1.1.

In Visual Cafe, to use the JavaBeans components in a JAR file, you must
first add the file to the Component Library. Then you can add the
componetns to your projects. If HTML documentation was included in the
JAR file for a Bean and you want to look at it, you need to expand the JAR
by using Jar.exe .

Field Tool Description

Sun Tools Jar.exe and Javakey.exe Jar.exe creates JAR files and
Javakey.exe lets you sign JAR files.
Signing allows downloaded applets in
JAR files to run with the same full
rights as local applications.

Microsoft Tools Cabarc.exe Cabarc.exe creates CAB files.

Swing Swingall.jar Contains Swing components.
5-54

Using JAR files
If you’re already shipping one set of resource files in another JAR, you can
exclude those duplicate files from the current JAR. You can also specify
whether a file within a JAR is a Bean or is used only at design time.

You can also deploy applets and applications from a JAR file.

About deployment and JAR files

Visual Cafe provides deployment features you can use within its
environment to quickly create JAR files. To control how you will deploy
your programs, you can set options for your project or for all projects in
the Project Options and Environment Options dialog boxes.

You can also create JAR files with the AutoJAR command, as described in
“Automatically updating Beans in the Component Library” on page 10-19.
AutoJAR creates the JAR faster but does not give you as much control over
the JAR output.

Using JAR files

In Visual Cafe, to use the JavaBeans components in a JAR file you must first
add the file to your project’s Component Library. Then you can add the
components to your projects. If HTML documentation was included in the
JAR for a Bean and you want to look at it, you need to expand the JAR by
using jar.exe .

Visual Cafe’s new Open by Name feature enables you to search for any
.jar or .class file. You can type partial names, and in the case of
multiple matches you can select the one you want to open.

Visual Cafe’s drag-and-drop feature has been extended to dragging and
dropping JAR files across projects. You can add JAR files to and remove
JAR files from a project by dragging files and folders to and from Windows
Explorer and other open projects.

Adding external files to a JAR

In the JAR Packager, the Add File command allows you to add files to the
JAR that are not in your current project. These could be GIF or HTML files,
as well as additional class files that may be dynamically loaded.
5-55

Chapter 5: Compiling and Deploying Your Project
Expanding a JAR file

Visual Cafe provides a tool that you can use within its environment to
quickly expand JAR files. To expand JAR files, use the jar.exe utility in
the java\bin subdirectory. For example, enter the following at a DOS
prompt:

jar -xf filename.jar

Viewing a JAR file

Visual Cafe provides a JAR Viewer tool that you can use within its
environment to view JAR files.

The JAR Viewer enables you to easily view the contents of a JAR file, just
as you would a ZIP file. You can sort by date, type, and file name. Use the
JAR Viewer to open an existing JAR or ZIP file, or to select a file in a JAR or
ZIP file. You can also use the JAR Viewer to view the JAR’s manifest file.

Here’s an example of what the JAR Viewer looks like:
5-56

Setting compiler options
To view the contents of a JAR file:

1 Choose JAR Viewer from the Tools menu.

The JAR Viewer displays.

2 Click Open JAR, and browse to the JAR file you wish to view.

The JAR Viewer opens the JAR file.

Within the JAR Viewer you can do the following:

◆ Sort the JAR contents by clicking the title of the column. Click the
column title again to reverse the sort order.

◆ View the manifest of a class file in the JAR by double-clicking the
selected file or clicking View.

◆ View the manifest of multiple files by selecting the files and then
clicking View.

◆ Hide the manifest details by clicking Hide Manifest Display. Click Show
Manifest Display to reveal the manifest details.

◆ Hide the Zip/Jar details by clicking Hide Zip Display. Click Show Zip
Display to reveal the jar/zip details.

Setting compiler options

From the Compiler tab of the Project Options dialog box, you can control
what compiler information is sent to the Messages window, which Java
compiler to use, whether Java optimizations are performed, and more.

This view changes options for the currently selected option set, either the
debug or final release type. For example, if you have the debug option
selected and change an option in the compiler page, Visual Cafe changes
that option for the debug option set, not the final option set. For more
5-57

Chapter 5: Compiling and Deploying Your Project
information, see “Specifying whether builds are debug or final” on
page 5-16.

Use the Compiler tab to set general compiler options, such as:

◆ Specifying Java optimizations

◆ Generating debug information

◆ Specifying the Sun Java compiler

◆ Showing compiler warning messages

◆ Showing progress messages

◆ Showing dependencies
5-58

Setting compiler options
◆ Showing all Java messages

For information about setting options that apply to Javadoc, see “Setting
Javadoc options” on page 4-70.

You can also use the Compiler tab to set advanced compiler options, such
as:

◆ Specifying Make settings

◆ Specifying custom compiler flags

These options are discussed in the following sections.

For information about compiler options for native programs, see “Setting
project options for native programs” on page 11-7.

Specifying Java optimizations

You can optimize the Java executable to produce a more compact
executable that runs faster.

You can also disable the function inlining, if needed. Function inlining
means that Visual Cafe takes a function’s code and imbeds it in the calling
function instead of calling the function. Inlining increases execution speed
but also increases executable size. By default, the Disable Function Inlining
option is not selected.

To specify Java optimizations:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Compiler tab.

4 In the Compiler Category drop-down list, choose General.

5 Select Use Java optimizations.

6 (Optional) Select Disable function inlining, if needed.

7 Click OK.

The changes take effect the next time you compile your project.
5-59

Chapter 5: Compiling and Deploying Your Project
Generating debug information

You can generate the debugging information used by the Visual Cafe
debugger. For example, this option lets you see local variables during
debugging. By default, the Generate Debug Information option is selected for
debug release types and not selected for final release types.

To generate debug information:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Compiler tab.

4 In the Compiler Category drop-down list, choose General.

5 Select Generate Debug Information to have Visual Cafe create
debugging information, or deselect it to turn this option off.

6 Click OK.

The changes take effect the next time you compile your project.

Specifying the Sun Java compiler

You can instruct Visual Cafe use the Symantec Java compiler or the Sun
Java compiler, javac.exe . When this option is deselected, the Symantec
Java compiler, which is faster, is used. By default, the Use Sun’s Java
Compiler option is not selected.

Note: You cannot compile native Win32 applications and DLLs with the
Sun Java compiler.

If you choose to use the Sun Java compiler, you can also o have Java
diagnostic information displayed as well. See “Showing all Java messages”
on page 5-62.

To select the Sun Java compiler:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.
5-60

Setting compiler options
3 Click the Compiler tab.

4 In the Compiler Category drop-down list, choose General.

5 Select Use Sun’s Java compiler to have Visual Cafe use the Sun Java
compiler, or deselect it so that the Symantec Java compiler is used.

6 Click OK.

The changes take effect the next time you compile your project.

Showing compiler warning messages

You can have Visual Cafe display compiler warnings, which appear in the
Messages window. During development, you may want to look at items
identified by warnings. By default, the Show Compiler Warnings option is
selected.

To show compiler warning messages:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Compiler tab.

4 In the Compiler Category drop-down list, choose General.

5 Select Show compiler warnings to have Visual Cafe display compiler
warnings in the Messages window, or deselect it so that these
messages are not shown.

6 Click OK.

The changes take effect the next time you compile your project.

Showing progress messages

You can have Visual Cafe display compiler progress messages, which
appear in the Messages window. By default, the Show Progress Messages
option is not selected.

To show progress messages:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.
5-61

Chapter 5: Compiling and Deploying Your Project
3 Click the Compiler tab.

4 In the Compiler Category drop-down list, choose General.

5 Select Show progress messages to have Visual Cafe display progress
messages in the Messages window, or deselect it so that these
messages are not shown.

6 Click OK.

The changes take effect the next time you compile your project.

Showing dependencies

You can have Visual Cafe display file dependencies, such as imports. File
dependency information appears in the Messages window. By default, the
Show Dependencies option is not selected

To show dependencies:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Compiler tab.

4 In the Compiler Category drop-down list, choose General.

5 Select Show dependencies to have Visual Cafe display file
dependency information in the Messages window, or deselect it so
that these messages are not shown.

6 Click OK.

The changes take effect the next time you compile your project.

Showing all Java messages

When using the Sun Java compiler, you can have the compiler report
diagnostic messages about its own execution. (This option is ignored by
the Symantec compiler.) By default, the Show All Java Messages option is
deselected.

To show all Java messages when using the Sun Java compiler:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.
5-62

Setting compiler options
The Project Options dialog box appears.

3 Click the Compiler tab.

4 In the Compiler Category drop-down list, choose General.

5 Select Show all Java messages to have Visual Cafe display Java
diagnostic information in the Messages window, or deselect it so
that these messages are not shown.

6 Click OK.

The changes take effect the next time that you compile your project.

Specifying Make settings

You can specify how imports are handled when you compile your project.
You can instruct Visual Cafe to do the following:

◆ Not check dependencies on imports

◆ Warn you when imports are out of date

◆ Generate classes for out-of-date imports

If you select the Don’t check dependencies on imports option, Visual Cafe
does not check imports to determine if they are out-of-date. By default, this
option is selected.

If you select Warn on out-of-date imports, Visual Cafe provides a warning
message if an imported class is out of date. The class is not regenerated.

If you select Generate classes for out-of-date imports, Visual Cafe searches for
the Java source code of imports and updates the classes to the most current
version, if necessary.

To specify Make settings:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Compiler tab.

4 In the Compiler Category drop-down list, choose Advanced.

5 Select one of the following options:

❖ Don’t check dependencies on imports

❖ Warn on out-of-date imports
5-63

Chapter 5: Compiling and Deploying Your Project
❖ Generate classes for out-of-date imports

6 Click OK.

The changes take effect the next time you compile your project.

Specifying custom compiler flags

You can choose to pass command-line options to the compiler. For
information on SJ compiler options, see “Compiling from the SJ command
line” on page 5-7.

To specify custom compiler flags:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Compiler tab.

4 In the Compiler Category drop-down list, choose Advanced.

5 In the Custom compiler flags field, enter the options you want.

6 Click OK.

The changes take effect the next time you compile your project.
5-64

C H A P T E R 6
Debugging Your Program

This chapter shows you how to use Visual Cafe’s integrated debugger to
find and correct problems in your programs. You’ll learn how to do the
following:

◆ Use the debug workspace

◆ Use the Breakpoints, Call Stack, Messages, Threads, and Variables
windows

◆ Debug code in the Source window

◆ Work with breakpoints

◆ Modify variables, expressions, and methods

◆ Debug threads

◆ Handle exceptions

◆ Use incremental debugging (Visual Cafe Professional and Database
Editions)

◆ Debug your programs in a Web browser (Visual Cafe Professional and
Database Editions)

For information about debugging native programs, see Chapter 11,
“Creating Native Win32 Java Applications.”

6-1

Chapter 6: Debugging Your Program
About the Visual Cafe debugger

After you write and execute a program, you may find that it doesn’t work
the way you expected it to. The fact that a program compiles without
errors doesn’t mean it will work correctly. When you run your program,
you may encounter a variety of errors, including compile errors (code
construction or syntax errors, for example), run-time errors that occur after
you start the program (dividing by zero or writing to a file that doesn’t
exist, for example), and logic errors (the program doesn’t do what you
want it to do).

Visual Cafe’s debugger lets you watch your program execute line by line.
Using the debugger, you can monitor:

◆ the values stored in variables

◆ which methods are being called

◆ the order in which program events occur

The Visual Cafe debugger:

◆ provides a Windows graphical user interface

◆ provides a graphical representation of data structures

◆ controls program execution

◆ supports breakpoints

◆ supports Java exceptions

◆ evaluates expressions

◆ lets you drag and drop to execute commands

◆ supports incremental debugging (Visual Cafe Professional and
Database Editions), allowing you to make changes while a program is
paused in the debugger and continue running the program with the
new changes

◆ provides a Messages window, which is separate from the debugger, to
display the status of your debugging session

◆ supports debugging in a Web browser (Visual Cafe Professional and
Database Editions) such as Netscape Navigator or Internet Explorer
6-2

About the debug workspace
About the debug workspace

After you build your project you can enter debug mode. This mode offers
several windows and menus that let you debug your program. While
you’re debugging, you can use the Source window (or the Class Browser’s
Source pane) and the Breakpoints, Variables, Call Stack, Threads, and
Messages windows to help you isolate and resolve problems. The Source
window, Source pane, Messages window, and Breakpoints window are
available at all times; the other windows show information while you’re
debugging.

The debug workspace is automatically loaded and enabled by default. The
Call Stack, Variables, Messages, and Breakpoints windows are opened
automatically in the same size and position they had when you last ran the
project.

Watch window Variables window Breakpoints window Call Stack windowMessages window
6-3

Chapter 6: Debugging Your Program
By default, Visual Cafe runs your Java program in the AppletViewer. By
running your program in the AppletViewer, Visual Cafe eliminates the need
for you to compile the .class file, open a Java-compatible Web browser,
write the corresponding HTML code and load it into the Web browser, and
reload the applet over and over again.

You can also debug in a Web browser if you wish, by selecting it in the
Project Options dialog box. See “Debugging applets in a Web browser” on
page 6-42 for more information.

The debugging windows and toolbar are introduced in this section. For
information on working in these tools, see “Using the debugger” on
page 6-10.

About the Breakpoints window

The Breakpoints window displays a list of breakpoints that are currently set
in the source code. Breakpoints are flags you can insert into the code at
specific points that cause program execution to pause (see “Working with
breakpoints” on page 6-16 for more information). When the debugger goes
through the instructions, it stops whenever it encounters a breakpoint. At
that point you can check on the value of the data and other program
conditions.

The Breakpoints window allows you to view a list of all breakpoints in
the currently active project. It lists the source file and line number of each
breakpoint. You can use the checkbox that precedes each breakpoint to
enable or disable it. Double-clicking on a breakpoint in the Breakpoints
window goes to the source file and displays the selected breakpoint.

Use this window to add, remove, or modify breakpoints. For more
information, see “Working with breakpoints” on page 6-16.
6-4

About the debug workspace
About the Call Stack window

The Call Stack window lists the method calls that have been made since
the program began running. A call is a reference made from one class to
methods in another class. This list of calls is known as the call stack. Each
entry lists the name of the method, followed by the name of the class that
contains the method. The Call Stack window shows all the method calls
that have started, but have not completed execution.

The call chain is the sequence of functions that were called to get to the
current function. You can access the functions in the call chain through the
Call Stack window.

See “Using the Call Stack window” on page 6-31 for more information.

About the Messages window

The Messages window displays error messages. When you’re debugging,
it displays messages during compile time. For example, if an error is
encountered during parsing, the error message displays in this window.

Double-click any error message to open the file in the Source window with
focus on the selected error.
6-5

Chapter 6: Debugging Your Program
Anything you write to System.out can also appear in the Messages
window when you’re running the program in the debugger. For example:

System.out.println(“my message”);

You can customize what kind of messages the Message window displays.
To specify what’s displayed in the Messages window, choose Options from
the Project menu. For example, one of the options in the Options submenu
lets you turn off Java compiler warnings.

See “Working with debugger messages” on page 6-15 for more
information.

About the Threads window

The Threads window presents at a glance all the threads that your
program has created, together with their states. A thread is a process in a
program that has a beginning and an end. In applications, the main
method is responsible for indicating the beginning and end of the program.
In applets, the Web browser uses various methods to control the program
flow.

Programs are not limited to performing a single process; Java programs can
use threads to perform multiple processes simultaneously. This is called
multithreading. For example, suppose you’re using a text editor to type a
letter and you want to save your changes before you continue. If the text
editor program is single-threaded, when you save the file the rest of the
program must wait until the file is completely written to the hard disk.

In a multithreaded application, the process that saves the file can be an
independent thread with its own beginning and end. When you save the
file, the file-saving thread starts and runs in parallel with the application’s
other processes. You can continue to type your letter as a copy of the file is
written to disk in the background. Multithreaded programs run faster and
are more convenient than single-threaded applications.
6-6

About the debug workspace
Note: The Threads window provides no benefits when you’re debugging a
single-threaded application. It’s useful only when you’re debugging a
multithreaded application.

You use the Threads window to:

◆ easily switch between threads to debug

◆ view the source for a selected thread

◆ update the Source window with a thread’s current location

◆ update the Call Stack window with a thread’s call chain

See “Using the Threads window” on page 6-33 for more information.

About the Variables window

A variable is a structure in memory that holds a value that has been
assigned to it. A variable that’s defined in a class defines the class’s
structure.

Your program’s variables are displayed in the Variables window, which
displays local variables, global variables, and objects that are local to the
current method. You can examine objects and array data elements as well
as simple data types. For each variable, the Variables window displays the
variable name, type, and value.

When you pause the execution of your program, you can modify the value
of a variable and then continue execution with the new value in place.
6-7

Chapter 6: Debugging Your Program
You can modify the value of a variable from either the Variables window or
the Watch window (the Watch window is described next).

For more information, see “Using the Variables window” on page 6-26.

About the Watch window

The Watch window lets you specify variables and expressions that you
want to watch continuously while debugging your program. In this
window, you can examine the contents of a class variable.

The Watch window lets you:

◆ specify variables and expressions to watch

◆ modify variables or expressions

◆ delete variables or expressions

See “Using the Watch window” on page 6-28 for more information.

You can also modify the value of a variable using the Variables window
(see “About the Variables window” on page 6-7 and “Using the Variables
window” on page 6-26).

About the Source window

The Source window is the primary debugging window; it’s where you see
your code at its current point of execution. When you debug your
program, you can open the Source window containing the current line of
code, if possible. (Sometimes Visual Cafe cannot open the Source window
because you may not have all the source, for example.)
6-8

About the debug workspace
When you are in debug mode, the Source window provies extra
functionality, allowing you to manipulate breakpoints and specify variables
to watch in the Watch window.

You can also examine variables and evaluate expressions that you select in
the Source window.

See Chapter 4, “Working with Source Code” for details about working with
source code.

About the Debug toolbar

You can use the debug environment’s Debug menu to select a variety of
debugging commands. Alternatively, you can use the Debug toolbar, which
provides easy access, in the form of icons, to the commands that you use
most often. From the Debug toolbar, you can do the following:

◆ Start a program

◆ Pause a program

◆ Stop a program

◆ Step into a method

◆ Step over a method

Run in Debugger

Pause

Stop

Step Into

Step Over

Step Out
6-9

Chapter 6: Debugging Your Program
◆ Step out of a method

◆ Toggle a breakpoint

◆ Evaluate an expression

For more information about using these commands, see the appropriate
sections in this chapter.

Keyboard shortcuts

In addition to the Debug menu and the Debug toolbar, Visual Cafe
provides keyboard shortcuts for many debugging commands. These
shortcuts are shown in the following table:

Using the debugger

When you run your program in the debugger, you hand control over to it
and interact with it as a user, but you can still debug it. When you run your
program outside of the debugger, you are executing your program as a
finished program and you can’t break into debug mode.

In Visual Cafe, you can choose to run your program in a number of ways.
You can run your program:

◆ so it pauses as it’s about to execute the first line

Debug Menu Command Keystroke equivalent

Continue F5

Step Into F8

Step Out SHIFT-F11

Step Over F10

Restart SHIFT-F5

Toggle Breakpoint

Evaluate expression
6-10

Using the debugger
◆ until it terminates normally or reaches a breakpoint or an exception
(breakpoints and exceptions are discussed later in this chapter)

You can also run your program from its current debug point until it
terminates, ignoring any breakpoints that are set. This allows you to check
for any suspected exception conditions. Alternatively, you can run your
program until execution reaches the cursor location in the Source window.
This is a handy way to continue from a breakpoint to a line you’re
inspecting in the Source window. For more information, see “Ignoring all
breakpoints” on page 6-22.

Starting a debugging session

You launch the debugger within Visual Cafe. Your project must be open in
the Project window so the debugger can have access to symbolic debugger
information.

Note: Your program must successfully compile into a .class file before
the debugger can open it.

After creating your program you’ll want to run it until it terminates
normally or encounters a breakpoint.

To start a debugging session:

1 Open the project you want to debug.

2 Choose Run in Debugger from the Project menu (or press F5).

Visual Cafe switches to debug mode, thereby running your program
in the debugger.

Note: Before running in the debugger, make sure your project options are
set to debug. See “Specifying whether builds are debug or final” on
page 5-16 for more information.

You can run your program outside of the debugger by choosing Execute
from the Project menu. For more information, see “About files in a project”
on page 3-42.

If you’ve set breakpoints or exceptions in your program (see “Working
with breakpoints” on page 6-16 and “Setting exceptions” on page 6-38 for
6-11

Chapter 6: Debugging Your Program
details), your program will run until it encounters one, at which point it
will pause execution.

To run to the first line in your program, you can step into a method. See
“Stepping into a method” on page 6-24 for more information.

Switching to the Debug workspace when running in the
debugger

You can control whether Visual Cafe switches to the Debug workspace
when running in the debugger. By default, this option is selected.
6-12

Using the debugger
To switch to the Debug workspace when running in the debugger:

1 From the Tools menu, choose Environment Options, then click the
Debugging tab.

2 If you want Visual Cafe to go to the Debug workspace when you
run in the debugger, select Switch to Debug workspace on Run. If you
want to remain in the current workspace when running in the
debugger, deselect this option.

Ending a debugging session

You can completely stop execution of a program during a debugging
session (as opposed to pausing temporarily, as described in the next
6-13

Chapter 6: Debugging Your Program
section). Stopping a program terminates it completely so that you can
continue working on it. Once you’ve stopped a program, you can’t
continue executing it. You can, however, edit your program as you debug
it by using Visual Cafe’s incremental debugging features (also called run-
time editing). For more information, see “Using incremental debugging” on
page 6-40.

To end a debugging session:

◆ Do either of the following:

❖ Quit the application by closing the project or Visual Cafe.

or

❖ Choose Stop from the Debug menu.

The debugging session ends, and the program is terminated.

Restarting a debugging session

After you stop a program’s execution, you can restart it to run it again from
the beginning. (This is different from continuing a program, where you
resume execution after a breakpoint; see the next section, “Pausing a
program to debug it.”)

To restart debugging a program from the beginning:

◆ Choose Restart from the Debug menu. (Or press SHIFT-F5.)

If you choose Restart while a program is executing, it’s the same as
choosing Stop from the Debug menu, then Run in Debugger from the
Project menu.

If you choose Restart when a program is stopped, it’s the same as
choosing Stop from the Debug menu, then Step Into from the Project
menu.

Pausing a program to debug it

In Visual Cafe, you can pause an executing program and switch to debug
mode. The effect on your program is the sameas hitting a breakpoint.

To pause a program:

◆ Choose Pause from the Debug menu.
6-14

Using the debugger
The program’s execution pauses.

Note: When an unhandled exception is encountered, the program
pauses automatically at the line where the error occurred.

When you pause your program, it may be executing in a portion of
code inside the Java AWT. If so, you’re prompted to find that source
file.

While your program is paused, you can examine its state by using the
Call Stack and Variables windows, as well as by setting breakpoints
See “Using the Call Stack window” on page 6-31, “Using the Variables
window” on page 6-26, and “Working with breakpoints” on
page 6-16 for more information.

Resuming a program

You can resume execution when your program is paused because of a
breakpoint or an exception, or because you manually paused execution.
When you resume your program, execution continues from the current
location.

To resume debugging a program:

◆ Choose Continue from the Debug menu. (Or press F5.)

The debugger stops executing the code at the line that’s marked with
a breakpoint.

Working with debugger messages

The Messages window is automatically displayed when you enter debug
mode. If there are syntax errors in your source code, Visual Cafe flags them
in the Messages window after a compile. You can easily navigate to each
error from this window.

To open the Messages window:

◆ Choose Messages from the View menu.

To navigate to an error from the Messages window:

1 Choose Messages from the View menu to bring the Messages
window to the front.
6-15

Chapter 6: Debugging Your Program
2 Double-click on any error message to open the related file in the
Source window.

The file containing the error opens in the Source window at the
offending line. Once the file opens, you can work on your source
code.

If you’re using incremental debugging, you can change your code
and compile-time errors are reported in the Messages window the
same as always. For more information, see “Using incremental
debugging” on page 6-40.

Note: The Messages window does not show any user-created threads until
a breakpoint is hit.

Using Messages window shortcut keys

You can use press keys to quickly navigate in the Messages window.
Here’s a list of the shortcut keystrokes (CTRL - = means press the CTRL and
= keys simultaneously, and so on):

Working with breakpoints

Watching an entire program execute from beginning to end helps you
understand the program flow. However, in many cases you’ll want to
observe only specific parts of the program. It makes sense to step through
just the few lines of code that have behavior you want to observe, rather
than the entire program. In these cases you can use breakpoints.

A breakpoint is a flag (a piece of code) placed in the bytecode that tells
the debugger to pause execution of the program. This tiny piece of code is
invisible to you, but it is represented in the Source window as a diamond
to the left of the line where the breakpoint occurs.

Press this... To go to this message in the Messages window...

CTRL - = Current error message

CTRL - SHIFT - = First error message

CTRL - – Next error message

CTRL - SHIFT - – Previous error message
6-16

Working with breakpoints
Breakpoints allow you to examine your program line by line as it executes
in the debugger. The compiler recognizes the breakpoint and treats it as a
part of your program. Breakpoints are important to the compiler only
when you’re testing and debugging your program. Breakpoints are ignored
when you compile your program into a finished .class file.

When you work with breakpoints, the debugger exectues all the
statements in the program until it encounters a breakpoint. The program
pauses at the breakpoint so you can check the state of the program at that
point, including checking the value of variables. As you debug your code,
you can use as many breakpoints as you want.

You can set breakpoints anywhere in your code in order to stop execution
at a particular line and regain control after starting your program. When
your program breaks on a breakpoint, you can examine variable values,
single-step your program, or examine the state of your program in any way
you like.

In Visual Cafe, you can set a breakpoint on:

◆ the current line in the Source window

◆ a specific line number

◆ a method name

◆ the condition of a variable or expression

These options are discussed in the following sections.

Managing breakpoints

Visual Cafe provides many ways to manage breakpoints, allowing you to
stop program execution at a specific location or on a predetermined
condition, such as a variable being assigned a particular value. You can
manipulate breakpoints in either the Source window or the Breakpoints
window. You can view or modify the different parameters of any
breakpoint and enable or disable the currently defined breakpoints.

To open the Breakpoints window:

◆ Choose Breakpoints from the View menu.
6-17

Chapter 6: Debugging Your Program
Breakpoints are saved with the project and are made visible each time you
open the project. The state of each breakpoint — enabled or disabled — is
also saved with the project.

Setting a breakpoint

You set a breakpoint directly in a line of source code in the Source
window.

To set a breakpoint:

1 Click the line where you want to set your breakpoint.

2 From the Source menu, choose Set Breakpoint. Or you can right-
click and choose Set Breakpoint. You can also click the Set
Breakpoint button on the Debug toolbar.

The breakpoint is set, indicated by a diamond symbol in the left
margin next to the line of code.

Tip: You can also set and remove breakpoints on the current line
by pressing the F9 function key.

Setting a breakpoint on a line number

You can have your program break every time a specific line in your current
source file is about to be executed. You set breakpoints in the Source
window, or in the Source pane of the Class Browser.

To set a breakpoint on a line number:

1 In the Source window, click the line where you want to set a
breakpoint.

2 From the Source menu, choose Set Conditional Breakpoint.

3 Select Line number.

4 Enter a line number in the text box.

5 Click OK.

The breakpoint is added to the list in the Breakpoints window.
6-18

Working with breakpoints
Setting a conditional breakpoint

A conditional breakpoint pauses the execution of your program when a
specified condition is met. When you set a conditional breakpoint, it’s
added to the breakpoint list in the Breakpoints window, along with the
condition you specify.

To set a conditional breakpoint:

1 In the Source window, click on the line where the breakpoint
should occur.

2 Choose Set Conditional Breakpoint from the Source menu.

3 Select If Expression Is True.

4 Type your breakpoint condition into the text box.

The condition that triggers a breakpoint must be an expression that
evaluates to true. When the expression is true, the breakpoint occurs.

Note: The expression is evaluated, so make sure it evaluates to a
Boolean. For example, n = 64 would set n to 64, while n == 64
would be true when n was 64 during the execution of your
program.

5 Click Add.

The breakpoint is added to the list in the Breakpoints window.

Modifying a conditional breakpoint

You modify a conditional breakpoint by changing the conditions of the
breakpoint in the Breakpoints window.

To modify a conditional breakpoint:

1 Choose Breakpoints from the View menu to display the Breakpoints
window.

2 Click on the Condition field of the breakpoint you want to change.

3 Type the new condition into the Condition field.

4 Press ENTER to save the change.
6-19

Chapter 6: Debugging Your Program
Setting a breakpoint at a method

You can have your program break every time a specific method is
executed by setting a breakpoint at a method name.

To set a breakpoint on a method name:

1 Choose Set Conditional Breakpoint from the Source menu.

2 Select Method Name in the dialog box that appears.

3 Enter a method name in the text box.

4 Click OK.

The breakpoint is added to the list in the Breakpoints window.

Enabling or disabling a breakpoint

You can tell the debugger to ignore a particular breakpoint by disabling
that breakpoint. If you want to use that breakpoint later, you can enable it.

Turning breakpoints on and off in the Breakpoints window

The checkbox preceding each breakpoint in the Breakpoints window
indicates whether or not that breakpoint is enabled. When the box is
checked, the breakpoint is enabled. When the box is empty, the
breakpoint is disabled.

To disable a breakpoint:

◆ Find the breakpoint in the Breakpoint window’s list and click the
checked box corresponding to that breakpoint.

When the box is empty, the breakpoint is disabled.

Note: Disabling a breakpoint does not delete it from the
breakpoint list. You can enable it later if you wish.

To enable a breakpoint:

◆ Find the breakpoint in the Breakpoint window’s list and click the
empty checkbox corresponding to that breakpoint.

When the box is checked, the breakpoint is enabled.
6-20

Working with breakpoints
Turning breakpoints on and off in the Source window

Toggling a breakpoint is a quick way to reverse the state of a breakpoint in
any line of source code in the Source window. When you toggle a
breakpoint, you’re turning it on or off.

In the Source window, an enabled breakpoint is marked with a solid red
diamond; a disabled breakpoint is marked with a hollow red diamond.

Note: Turning a breakpoint off does not remove it from Visual Cafe; it
merely tells the debugger to ignore that breakpoint.

To toggle a breakpoint in the Source window:

1 In the Source window, click on the line where you want to toggle
the breakpoint.

2 In the Debug toolbar, click the Toggle Breakpoint toolbar button to
turn off the breakpoint. Click it again to turn the breakpoint back on.

Tip: You can also use the F9 function key to toggle breakpoints.

Clearing a breakpoint

If you no longer need a breakpoint at a certain line, you can clear it.
Clearing a breakpoint deletes it from the set of breakpoints you’ve defined.
(Clearing a breakpoint is different from disabling a breakpoint, which
retains it in your breakpoint list in a temporarily disabled state; see the
previous section, “Enabling or disabling a breakpoint.”)

You can clear a breakpoint at the line of code in the Source window (or
the Source pane of the Class Browser) or from the list in the Breakpoints
window.

To clear a breakpoint in the Source window or pane:

1 Select the breakpoint by clicking on the line where the breakpoint
is set (the breakpoint is denoted with a diamond symbol in the left
margin).

2 Choose Clear Breakpoint from the Source menu, or right-click and
choose Clear Breakpoint.
6-21

Chapter 6: Debugging Your Program
To clear a breakpoint in the Breakpoints window:

◆ Do either of the following:

❖ Select one or more breakpoints in the list and press DELETE.

❖ Select one or more breakpoints, then choose Clear from the
Breakpoints menu, or right-click and choose Clear.

To clear all breakpoints in the Breakpoints window:

◆ Choose Clear All from the Breakpoints menu, or right-click in the
Breakpoints window and choose Clear All.

When the breakpoint is cleared, the diamond symbol is removed
from the left margin of the line of source code, and the breakpoint is
removed from the list in the Breakpoints window.

Ignoring all breakpoints

There’s an easy way to ignore all breakpoints you’ve set without changing
the state of any of the breakpoints in the Breakpoints window. You can do
this by:

◆ Running to the end of the program

or

◆ Running to the cursor location

Running to the end of the program

You can run your program from its current point until the end, ignoring all
breakpoints.

To run to the end of the program:

◆ Choose Continue to End from the Debug menu.

Your program will ignore all breakpoints and continue to run until it
terminates, or until you cause it to terminate by closing it as you
would outside of the debugger.
6-22

Working with breakpoints
Note: If any kind of exception occurs, the program will pause at
the point of the violation, unless otherwise instructed. You can
specify options for handling exceptions by clicking the Debugger
tab of the Project Options window, choosing Exceptions from the
Category menu, then restarting the debugging session. For more
information, see “Setting exceptions” on page 6-38.

Running to the cursor location

You can run your program until it reaches the cursor location, ignoring any
breakpoints along the way.

To run to the cursor location:

◆ Choose Continue to Cursor from the Debug menu.

Your program will ignore all breakpoints and run until it reaches the
cursor location.

Note: If the selected line does not get executed before the end of
the program, your program will not pause.

Viewing the source code for a breakpoint

In Visual Cafe, you can select a breakpoint that’s listed in the Breakpoints
window and view the associated source code.

To view the source code associated with a breakpoint:

1 From the View menu, choose Breakpoints to open the Breakpoints
window.

2 Click the breakpoint for which you want to see the source code.

3 From the Breakpoint menu, choose Go to Source, or right-click and
choose Go to Source.

The source code associated with that breakpoint is displayed in the
Source window.
6-23

Chapter 6: Debugging Your Program
Stepping through code

When you debug a program, you can execute the instructions in the
program line by line and watch the result. This allows you to pinpoint the
exact source of a problem in your code..

When your program hits a breakpoint, you can step through your lines of
code one line at a time using three techniques: Step Into, Step Over, and
Step Out. Each technique has an associated item on the Debug toolbar.

Stepping into a method

When you step into your code, the debugger executes one line of code,
including any jumps to other methods, until it reaches the next line of
code. This method allows you to step through a program, executing every
statement completely.

When you step into a method call, the debugger jumps to the code for that
method, and steps through it as well. If the code for the method is in a
different file, the debugger opens that file and jumps right to the code for
the method.

Stepping into every line of code for every method called by your program
isn’t usually the best way to debug a program. For example, let’s say that
your program calls the println method. We know the println method
works, because it’s part of the Java language. Stepping into method calls
like println throughout a program can quickly result in a chaos of open
windows. A more useful approach to debugging is to step into some parts
of the code and to step over other parts. You can avoid stepping through
code that you know works by stepping over method calls. However, if you
stepped in where you should have stepped over, you could choose to step
out.

If the program is running and you are paused in the program, this
command steps to the next source code statement. If the current line is a
method call, Step Into steps inside the method. If the method is in another
source file, that file is opened to the next line of source code.

To step into a method:

◆ Choose Step Into from the Debug menu. (Or press F8.)
6-24

Working with breakpoints
To start debugging and pause at the first line, use this command.
When used on an applet, Step Into takes you to the applet
constructor.

Note: If the next line to be executed does not contain a method call, Step
Into performs a single-step of the line.

Stepping over a method

Step Over executes one line of code. However, if the current statement is a
call to a method, the debugger executes the method behind the scenes and
returns to the next statement following the method call. Step Over executes
the program to the next statement, unless a breakpoint or an exception is
encountered before execution reaches that point.

By using the Step Over command, you can bypass opening other files
unnecessarily and stepping into every line of code each time a method is
called.

You can setp over a method call contained in your code after the debugger
has hit a breakpoint. This causes the single step to execute the called
method in its entirety and land on the next line of code in your source.

To step over a method:

◆ Choose Step Over from the Debug menu. (Or press F10.)

Note: If the next line to be executed does not contain a method call, Step
Over performs a single-step of the line.

Stepping out of a method

Step Out returns to the calling method at the point after the current method
was called, unless a breakpoint or an exception is encountered before
execution reaches that point.

Note: If a variable is declared but not used, the debugger will step over
that declared statement.
6-25

Chapter 6: Debugging Your Program
If you hit a breakpoint and want to execute the rest of that method
returning to the caller, you can choose to step out of the currently
executing method.

To step out of a method:

◆ Choose Step Out from the Debug menu. (Or press SHIFT - F11.)

Viewing and modifying variables, expressions,
and methods

You can examine any of the variables in your program while in debug
mode. You can modify the value of a variable from the Variables window,
the Watch window, or the Evaluate Expressions dialog box.

You can watch a variable or expression in the Watch window. You can also
see method calls in the Call Stack window.

Using the Variables window

The Variables window shows the variables — such as local variables,
global variables, and objects — that are active in the current context. A
context is the particular portion of your program on which Visual Cafe is
focusing. This window is useful for examining errors that occur when your
program passes parameters to methods. You can modify these variables
directly in this window. When you pause the execution of your program,
you can modify the value of a variable and then continue execution with
the new value in place. You can examine objects and array data elements
as well as simple data types.

Use the Variables window to:

◆ view the value of a variable

◆ view type information for a variable

◆ modify a variable

To open the Variables window:

◆ Choose Variables from the View menu.
6-26

Viewing and modifying variables, expressions, and methods
Viewing the value of a variable

You can view the value of a variable by selecting its name from the
Variables window.

To view the value of a variable:

1 Choose Variables from the View menu.

The Variables window opens, displaying all the variables in the
current context of the program.

2 Click on the variable you want to view.

3 To expand an object to see its contents, click the plus sign (+) to
the left of the object you want to expand.

Viewing type information for a variable

You can view a variable’s type from the Variables window.

To view type information for a variable:

1 Choose Variables from the View menu.

The Variables window opens, displaying all the variables in the
current context of the program.

2 Click on the variable whose type you want to view.

The variable’s type is shown in the Type column.

Modifying a variable in the Variables window

You can modify the value of a variable by selecting it in the Variables
window and typing a new value in the Values column. When you pause
the execution of your program, you can modify the value of a variable and
then continue execution with the new value in place.

Note: You can modify a variable in the Variables window only when your
program is paused in the debugger.

To modify a variable in the Variables window:

1 Choose Variables from the View menu.

The Variables window opens, displaying all the variables in the
current context of the program.
6-27

Chapter 6: Debugging Your Program
2 Click the variable you want to change.

3 Click in the Value column.

4 Type the new value in the Value box.

5 Press ENTER to save the change.

Note: To modify the value of an array or any structured type, edit the
individual array’s fields or elements. You cannot edit an entire array or
structure at once.

Enabling or disabling ValueTips at debug time

ValueTips display the value of a variable in the Source window when you
place your cursor over the variable at debug time. The variable has to be in
in scope, or the area where the variable is applicable.

To enable or disable ValueTips at debug time:

1 From the Tools menu, choose Environment Options, then click the
Debugging tab.

2 Select or clear the Enable ValueTips option.

3 If Enable ValueTips is selected, set the amount of time, in units of 1/
10 of a second, that goes by before a tip displays.

Using the Watch window

In Visual Cafe, you can specify variables and expressions that you want to
watch while debugging your program. The variables that you elect to
watch are displayed in the Watch window, which is available only when
you pause a running program. You can also modify the value of a variable
using the Watch window.

Caution: Since the program is paused, do not enter watch expressions that
rely on calls to other components.

To open the Watch window:

◆ Choose Watch from the View menu.
6-28

Viewing and modifying variables, expressions, and methods
Adding a variable or expression to watch

You can watch a variable or expression while debugging by adding the
variable name to the Watch window. You can add variables and
expressions in several ways, as described in this section.

Caution: Because the program is paused, you should not enter a watch
expression that relies on calls to other components.

To add a variable or expression by dragging and dropping:

◆ Drag an item from the Variables window to the Watch window.

To add a variable or expression by typing the name:

1 Choose Watch from the View menu.

The Watch window displays.

2 Type a variable name or expression in the Watch window’s Watch
field. As you begin to type, the window changes to edit mode for
the column of the selected row.

3 Press ENTER to save or ESC to leave the item unchanged.

To add a variable or expression from the Evaluate Expression dialog
box:

1 In the Variables window, right-click the variable you want to
watch.

2 Choose Evaluate Expression from the pop-up menu.

3 In the Evaluate Expression dialog box, click Add Watch.

The Watch window evaluates and immediately displays the value of
the variable or expression.

Modifying a variable or expression in the Watch window

You can use the Watch window to change the variable name or expression
that you elected to watch at run-time. You can also use the Watch window
to modify variables in place while your program is in debug mode.

Caution: Because the program is paused, you should not enter watch
expressions that rely on calls to other components.
6-29

Chapter 6: Debugging Your Program
To locate the variable you want to modify:

1 Choose Watch from the View menu.

All the variables and expressions you’ve chosen to watch are
displayed in the Watch window.

2 Click on the variable or expression you want to change.

The variable is selected and ready to be modified.

To change the value of a variable:

1 In the Watch window, select the variable that you want to modify.

2 Click in the Value field.

3 Type the new value in the Value box.

The variable is changed to use the new value.

Only primitive types of variables can be modified by clicking in the
Value cell and entering a new value. After modifying a variable, you
can continue debugging from the current line without having to stop
and restart the debugging session.

Note: To modify the value of an array or any structured type, edit the
individual array’s fields or elements. You can’t edit an entire array or
structure at once.

To change the variable or expression to watch:

1 In the Watch window, select the variable that you want to watch.

2 Click in the Watch field.

3 Edit the variable or expression.

4 Press ENTER to save the change.

Deleting a variable or expression from the Watch window

When you’ve finished watching a run-time variable or expression, you can
delete it from the Watch window.

To delete a variable or expression:

1 Choose Watch from the View menu.

All the variables and expressions you have chosen to watch are
displayed in the Watch window.
6-30

Viewing and modifying variables, expressions, and methods
2 Click on the variable or expression that you want to delete from
the list.

3 Press DELETE.

The selected entry is deleted from the Watch window. You can also
delete multiple entries.

Using the Call Stack window

When debugging in Visual Cafe, you can view the stack of methods in your
application that have started but not completed. These pending methods
are displayed in the Call Stack window. The currently executing method
appears at the top of the stack, and older function calls appear below that.
You can also see the parameter types and values for each method on the
call stack.

The active method is indicated by a black arrow next to it. By double-
clicking an entry in the Call Stack window, you can change the context of
the Variables window to display the variables for that method and its
source.

Click an entry in the Call Stack window...

...and the Variables window
displays variables for that method.
6-31

Chapter 6: Debugging Your Program
To open the Call Stack window:

◆ Choose Call Stack from the View menu.

Viewing parameters for a method on the call stack

You can view the parameters passed to a method on the call stack when
that method was called. Visual Cafe allows the display of both values and
types for each parameter passed.

To view parameter types:

◆ Choose View Parameter Types from the Calls menu.

This action toggles the display of parameter types in the Procedure
column of the Call Stack window.

To view parameter values:

◆ Choose View Parameter Values from the Calls menu.

This action toggles the display of parameter values in the Procedure
column of the Call Stack window.

Viewing variables for a method on the call stack

You can view the values of variables for any method on the call stack. Only
the variables in scope at the time the method entered the stack can be
viewed.

To view the variables on the call stack:

1 Choose Call Stack from the View menu.

The Call Stack window opens.

2 Click the method whose variables you want to view.

3 Choose Go to Variables from the Calls menu.

This opens the Variables window, which lists the variables in the
selected call.

Viewing source code for a method on the call stack

You can choose any method entered on the call stack and view the source
code for that method.
6-32

Debugging threads
To view the source for a method on the call stack:

1 Choose Call Stack from the View menu.

The Call Stack window opens.

2 Click the method whose code you want to view.

3 Choose Go to Source from the Calls menu.

This opens the Source window for the selected call.

Debugging threads

Java is a multithreaded language, which means that Java allows for more
than one sequence of execution at a time. You might want to use threads
to allow your Java program to talk to more than one client across
networks, for example.

You use the Threads window to debug the threads in your program.

For an itroduction to the Threads window, see “About the Threads
window” on page 6-6.

Using the Threads window

While you’re debugging, the Threads window lists the active threads, one
per row. The currently selected thread is highlighted. You can change the
selection by clicking a different row, or by using the Up and Down Arrow
keys.

The primary thread is identified by a bold arrow in the left margin. This
thread receives user input and is automatically created by the operating
system when a process (an instance of ann application) is created.

The active thread — the one that was active when you entered break
mode — is identified by a non-bold arrow in the left margin.

Note: If you’re using multiple threads in your program, each thread has its
own call chain. To see the call chain for an individual thread, drag the
thread from the Threads window and drop it on the Call Stack window.

When debugging a multithreaded program, you can select a single thread
using the Threads window. The Threads window shows all the existing
6-33

Chapter 6: Debugging Your Program
threads that your program has created, and the state of each thread. You
can also update the Call Stack window with a single thread’s call chain and
update the Variables window to show only the variables within the current
thread.

To open the Threads window:

◆ Choose Threads from the View menu.

Debugging a single thread

If you want to focus your debugging efforts on a specific thread to
eliminate the behavior of others, you can set the focus to that thread and
work on just that thread.

To debug a single thread:

1 Choose Threads from the View menu.

The Threads window opens.

2 Click the thread you want to work on.

3 From the Threads menu, choose Set Focus.

The focus of the debugger is set to the selected thread.

4 Continue debugging that thread in the Call Stack window,
Variables window, or Source window.

Suspending a thread

If you’re working on a multithreaded program, you can suspend any
thread if you suspect it of causing unwanted side effects while your
program is running or while you’re debugging.

To suspend a thread:

1 Choose Threads from the View menu.

The Threads window opens.

2 Click the thread you want to suspend.

3 Choose Suspend from the Threads menu.

The selected thread is suspended.
6-34

Debugging threads
Resuming a suspended thread

If you’ve suspended any threads to temporarily eliminate their behavior
from your program, you can resume any one you choose from the list
displayed in the Threads window.

To resume a suspended thread:

1 Choose Threads from the View menu.

The Threads window opens.

2 Click the thread you want to resume.

3 From the Threads menu, choose Resume.

The suspended thread is resumed.

Suspending other threads

If you want to focus your debugging attention on a single thread, Visual
Cafe allows you to suspend all the other threads to narrow down the
behavior of your program.

When debugging multiple threads, the timing of the threads may be
different than at run time because of the memory overhead used in
debugging. For example, say you have a program that prints the numbers 1
through 10 in numerical order, with one thread responsible for printing the
odd numbers and the other thread responsible for printing the even
numbers. When you execute this program, the numbers will appear in
correct sequence. When debugging, they might print as 1, 3, 5, 2, 4.

To suspend other threads:

1 Choose Threads from the View menu.

The Threads window opens.

2 Click the thread you want to want to work on.

Note: You’re causing all threads except the selected thread to be
suspended.

3 Choose Suspend Others from the Threads menu.

All threads in the debugger except the one that’s selected are
suspended.
6-35

Chapter 6: Debugging Your Program
Resuming other suspended threads

If you’ve suspended all but one thread in a multithreaded program (see the
preceding section, “Suspending other threads”), you can resume all other
threads at any time.

To resume other suspended threads:

1 Choose Threads from the View menu.

The Threads window opens.

2 Click the thread that you don’t want to resume.

Note: You’re causing all threads except the selected thread to
resume.

3 Choose Resume Others from the Threads menu.

All threads in the debugger except the one that’s selected are
resumed.

Viewing the source code for a selected thread

If you want to look at the source code for a specific thread, you can do so
from the Threads window.

To view the source code for a selected thread:

1 Choose Threads from the View menu.

The Threads window opens.

2 Click the thread you want to focus on.

3 Choose Set Focus from the Threads menu.

Set Focus updates the Source window.

4 If the Source window isn’t already open, choose Source from the
View menu.

The thread’s source code is displayed in the Source window.

Viewing the active variables in a thread

You can view the values of variables for any thread that’s currently
executing.
6-36

Handling exceptions
To view the active variables in a thread:

1 Choose Threads from the View menu.

The Threads window opens.

2 Click the thread you want to focus on.

3 Choose Set Focus from the Threads menu.

Set Focus updates the Variables window.

4 If the Variables window isn’t already open, choose Variables from
the View menu.

The Variables window opens, displaying the chosen thread’s
variables.

Viewing the call stack for a thread

If you’re working on a specific thread and want to see the call stack for just
that thread, Visual Cafe allows you to do so.

To view the call stack for a thread:

1 Choose Threads from the View menu.

The Threads window opens.

2 Click the thread whose call stack you want to view.

3 Choose Set Focus from the Threads menu.

Set Focus updates the Call Stack window.

4 Choose Call Stack from the View menu.

The Call Stack window opens on the thread you selected.

5 Click the method whose code you want to view.

Handling exceptions

Java uses exceptions to process program errors. An exception is an event
that occurs during the execution of your program that interferes with,
disrupts, or stops the normal flow of instructions.
6-37

Chapter 6: Debugging Your Program
Throwing exceptions

Many types of errors — from simple programming errors to a hard disk
crash — force the Java run-time system to throw exceptions. When such an
error occurs within a Java method, the method creates an exception
component and passes it to the Java run-time system.

This exception component contains important information about the
exception, including its type and the state of the program when the error
occurred. The run-time system tries to find a piece of code to handle the
error. This process of creating an exception component and passing it to
the Java run-time system is called throwing an exception.

Catching exceptions

After a method throws an exception, the Java run-time system finds a way
to handle the exception. One place to handle exceptions is the set of
methods in the call stack of the method where the error occurred. The Java
run-time system scans backwards through the call stack, starting in the
method where the error occurred, until it locates a method that has a
suitable exception handler. An exception handler is suitable if the type of
the exception thrown is the same as the type of the exception handled by
the exception handler.

The exception moves up through the call stack until a suitable handler is
found and one of the calling methods handles the exception. This is called
catching an exception. If the run-time system searches all of the methods
on the call stack without encountering a suitable exception handler, the
run-time system and the Java program terminate.

Setting exceptions

When you run your program, you can choose to have all exceptions break
into the debugger, to stop at a particular expression, or to have only
unhandled exceptions break into the debugger.

To stop whenever a particular exception occurs:

1 Choose Options from the Project menu.

The Project Options dialog box appears.
6-38

Handling exceptions
2 Click the Debugger tab.

3 From the Debugger Category drop-down list, choose Exceptions.

A list of possible exceptions displays.

4 Check the box to the left of the exception name to select that
exception.

The program stops whenever the exception is encountered,
regardless of whether or not your program handles the error.

5 (Optional) To add an exception, click Add and then type in the
name of the exception.

6 (Optional) To delete an exception, select the exception and click
Delete.

7 (Optional) To restore the default settings, click Restore Defaults.

This restores the defaults for all exceptions, thereby disabling
stopping at all exceptions except
java.lang.ArrayIndexOutOfBoundsException (probably
the most common exception error).
6-39

Chapter 6: Debugging Your Program
The default behavior for exceptions is for the debugger to stop only if
a particular exception isn’t handled in the source code.

Using incremental, browser, and remote
debugging

You can check your program for errors or complications in addition to
regular debugging features. If you’re using Visual Cafe Professional or
Database Edition, you can edit your program and immediately see the
effects in the debugger. You can also run your applets in a Web browser,
which can be helpful because not all Web browsers work with applets in
the same way. Another useful option is that you can run your program on
one computer and debug it on another, to further simulate the end user’s
experience with your program.

For information on debugging native programs, see “Debugging native
programs” on page 11-6.

Using incremental debugging

Visual Cafe has several incremental debugging features that make
debugging your Java programs more efficient. While your program is
executing or paused in the debugger, you can edit it and immediately see
the effects of the code change. This is also called run-time editing. The
code is compiled and saved automatically.

In order to make use of this feature, you need to first enable Visual Cafe
for incremental debugging.

To enable incremental debugging:

1 From the Tools menu, choose Environment Options, then click the
Debugging tab.

2 Select the appropriate options:

❖ Always compile changes and update program, no prompt – Enables
run-time editing so that choosing a Save menu item causes new
changes to be compiled and reflected in an executing program.
If the program is paused, resuming it causes all changes to be
applied and saved. (This is the default.)
6-40

Using incremental, browser, and remote debugging
❖ Prompt before compiling changes and updating program – Enables
run-time editing like the previous option, except that you are
prompted first so that you can choose to stop run-time editing.

❖ Always ignore changes – Disables the run-time editing feature.
(Visual Cafe version 1.0 worked this way.)

To incrementally debug your program:

◆ While you have your program open in Debug mode, do any of the
following:

❖ To save all the changes that you’ve made to your files, choose
Update Now from the Debug menu. This forces an incremental
update and saves all files.

❖ To go back to the method that called the currently active
method, choose Restart Method from the Debug menu. You can
then restart the current method from the beginning.

Note: You should not think of the Restart Method command as a
type of undo command, because it cannot undo some edits, such
as variable edits. It does not undo side effects of code that was run
(if part of a program runs two times and causes an exit, for
example).

If you change a portion of code that is active (anywhere on the call
stack), the code is compiled and saved and you’ll see a dialog box
that asks what action you want to take:

❖ Restart the program – Start the program in the debugger again.

❖ Restart the active method – Start the active method again. (This
option is valid only if you perform run-time editing while your
program is paused.)

❖ Continue – Continue with the old code until the next time the
code becomes active. Ignore breakpoints in this code until the
code becomes active again.

❖ Stop debugging – Exit the debugger.

The recommended action is already selected for you in the dialog
box.

Note: When you’re debugging native code you can add new methods,
while with bytecode you cannot. For more information, see “Debugging
native programs” on page 11-6.
6-41

Chapter 6: Debugging Your Program
Debugging applets in a Web browser

Applets and applications may run differently in different Web browser
Virtual Machines (VMs), so you can save time and effort by debugging in a
browser to preview these differences. Debugging in a Web browser allows
you to test your applet in the environment where the applet will be used.
That way, you’ll be able to refine your code to reflect differences in the
virtual machines of the supported browsers.

Another advantage of running your programs in a Web browser is that you
can make use of classes that are only supported by that particular Web
browser’s VM. For browser debugging to work, you must have either
version 4.04 of Netscape Navigator (with the JDK 1.1 PR3 or newer plugin),
or Internet Explorer 4.0 or higher.

Note: This feature is available only in Visual Cafe Professional and
Database Editions.

To turn on debugging in a Web browser:

1 Activate the Project window of the project you want to work with.

2 Choose Options from the Project menu.

3 In the Project Options dialog box, click the Debugger tab.

4 In the Debugger Category drop-down list, choose General.

5 Select either Netscape Navigator or Microsoft Internet Explorer/Jview.

The default is to debug using Sun Java vm (the Visual Cafe
AppletViewer).

See the following set of procedures for more information about
debugging with Netscape Navigator.

6 Choose Run in Debugger or Step Into from the Project menu to start
your debugging session in the selected Web browser.

7 Click OK.

The changes take effect immediately.

To allow debugging in Netscape Navigator:

1 Install Netscape Navigator 4.04 or later.

2 Install the Netscape JDK 1.1 Support Patch for 4.03 or greater.
6-42

Using incremental, browser, and remote debugging
3 Change to your current Navigator user directory and edit your
prefs.js file to allow local applet access to the hard drive. In
...\netscape\user\ username\prefs.js , add the following
text:

user_pref("signed.applets.low_security_for_local_classes
", true);

4 This allows Netscape Navigator to access the Visual Cafe applet on
your hard disk.

Considerations for browser debugging

Here’s some information that you should be aware of when debugging in a
Web browser:

◆ Netscape Navigator can only debug applets; if you change the project
type to Java application, then you’ll notice that the debug using option
will be set back to Sun Java VM and the Netscape Navigator option will
be unavailable. Internet Explorer supports both applets and
applications.

◆ If Visual Cafe can’t detect the supported version of either Web browser,
the Web browser option is unavailable.

◆ If you save a project that has the debug in Netscape Navigator or
Microsoft Internet Explorer/Jview project option selected, and then you
remove Netscape Navigator or Microsoft Internet Explorer and try to
debug your project, you’ll see a message stating that the browser is not
installed and that the Sun Java VM will be used instead. This dialog
box has a checkbox that allows you to permanently change the option
for the project to Sun Java VM to prevent the message from appearing
in the future.

◆ The following options are not allowed while debugging in Netscape
Navigator and Internet Explorer: incremental debugging, expression
evaluation, and remote debugging.

Debugging programs on a remote computer

With Visual Cafe, you can run a program on one machine and debug it
remotely on another. To do this, Visual Cafe, the class files, and the HTML
files need to be on the remote computer. You might find remote debugging
useful, since you can see the program’s user interface on one computer
and the debugging information on the main computer.
6-43

Chapter 6: Debugging Your Program
Debugging a program on a remote computer works just as it does when
you debug and run on the same computer. The only difference is that you
cannot perform runtime editing or make any changes to the remote
program while you’re debugging it remotely.

Note: This feature is available only in Visual Cafe Professional and
Database Editions.

Setting up for remote debugging

Before beginning a remote debugging session, you must properly
configure the local and remote machines.

Note: You can debug an applet or application remotely on another
machine. You cannot debug native applications or DLLs remotely.

To configure the local and remote machines, the following conditions must
apply:

◆ Visual Cafe must be installed and running on both machines.

◆ The TCP/IP networking protocol must be installed and configured on
both computers.

◆ Identical copies of the project must be on both machines. You must
have the class files on the remote machine, although you don’t
necessarily need the source files.

The class files you’re debugging reside on the remote computer, and not
on the computer where you’re running the debugger. Therefore, to have a
successful debugging session you need to be sure that the remote
computer has the debug build of the classes you need.

Note: Remote debugging first looks in the Visual Cafe sc.ini file for
class path information, and then in the Windows class path. This
information must be correctly configured in order for remote debugging to
function properly. For more information, see “Setting environment
variables in the sc.ini file” on page 3-72. Make sure the class path is set
correctly in autoexec.bat for Windows 95 and 98 or in the Control
Panel for Windows NT.
6-44

Using incremental, browser, and remote debugging
If you’re going to remotely debug an applet, you need to specify the
absolute path to the associated HTML file in the Project tab of the Project
Options dialog box (unless the HTML file is located in the remote
computer’s root directory). Specify the absolute path to the HTML file in
the Start with Web page option. For more information, see “Specifying an
applet’s HTML file” on page 5-3.

Note: You cannot perform remote debugging in a Web browser.

Starting remote debugging

When both computers are configured correctly, you’re ready to begin your
remote debugging session. Visual Cafe uses the debugvm.exe file to
execute remote debugging.

To debug an applet or application on a remote computer:

1 Open a console session (DOS window) on the remote machine.

2 Navigate to the directory containing the class and HTML files of
the program you intend to debug.

3 Execute debugvm .

Debugvm displays some version information, and then a password
and the machine’s IP address.

Remote debugging is now enabled for the remote machine.

4 On the local computer that’s running the debugger, load the
project that corresponds to the class and HTML files you’re
debugging on the remote computer.

5 Choose Debug in Waiting VM from the Project menu.

The Remote Debug dialog box appears.

6 Enter the Host Address and Password as reported by caferemote .

Field Description

Host The IP address of the remote computer.

 Password The remote computer’s password, which is
returned by debugvm.exe run on the
remote computer.
6-45

Chapter 6: Debugging Your Program
7 You can now begin to debug the remote computer’s program from
your local computer. You can click the standard debug commands
Go to Breakpoint or Step Into to do so.

Ending remote debugging

Once you’re finished debugging the remote program, you can stop the
debugging session.

For information about native debugging, see “Debugging native programs”
on page 11-6.

To terminate a remote debugging session:

◆ On the remote computer, select the debugvm console window
and press CTRL–C.

This terminates the debugging session that’s currently in process.

To continue debugging, you need to reexecute debugvm in order to get a
new password.
6-46

II

U s i n g

C o m p o n e n t s

C H A P T E R 7
Working with Components

This chapter shows you how to use components in Visual Cafe. Much of
the information applies to all types of components you’ll use in Visual
Cafe: AWT, Swing, and JavaBeans components. Where indicated, the
information here pertains only to AWT-based components. For information
about working with Swing components in Visual Cafe, see Chapter 8,
“Working with JFC/Swing Components.” For information about using
JavaBeans components, see Chapter 8, “Working with JFC/Swing
Components.”

Visual Cafe makes it easy to design your graphical user interface (GUI) by
allowing you to visually lay out your applets and windows. To design your
GUI, you must first create a Visual Cafe project. Then you can add
components, such as windows, frames, menus, dialog boxes, text, buttons,
and graphics, to the project. (See “About components” on page 7-2 for
information.) Some components contain other components, and some
components must be contained by another component. For example, a
button must be contained by another component, such as an applet,
window, or dialog. You can add components to a project from the
Component Library or Component Palette (see “About the Component
Library” on page 7-7 and “About the Component Palette” on page 7-11 for
more informaton).

You can also open top-level components, or forms, in the Form Designer,
then visually arrange components on a form. (See “About forms” on
page 7-20 and “About the Form Designer” on page 7-20 for more
information.)

In addition, you can:

◆ set component properties, such as color and text

7-1

Chapter 7: Working with Components
◆ use customizers to edit components when you want a visual interface
for changing properties

◆ create interactions between components

About the Java AWT

The Java Abstract Windowing ToolKit, or AWT, is a standard and
portable GUI library that you can use to create visual “front ends,” or user
interfaces. This GUI library is cross-platform for developing and running
applications and applets. Visual Cafe has integrated the AWT into its visual
design environment so you can quickly create your user interfaces. You
can view the AWT components by expanding java.awt in the Packages
view of the Project window.

The AWT contains a set of pre-built components that encapsulate the core
user-interface elements that can be used by your applet or application. The
AWT is a cross-platform library; its methods and classes are abstracted to
remove any dependencies on a particular operating system. It’s a Java
package that can be used in any Java program by importing java.awt.*
using the import keyword. Visual Cafe automatically imports this package
for you.

About components

Components allow users to interact with your program. Components are
reusable objects that you add to your projects, such as:

◆ Scroll bars

◆ Buttons

◆ Checkboxes

◆ Text-entry fields

◆ Menus

◆ Graphics files

There are three types of components in Visual Cafe: visual components,
non-visual components, and containers. A visual component is visible at
run time and lets users interact with your applet or application; it has a
7-2

About components
screen position, a size, and a foreground and background color. Examples
of visual components are forms, applets, and buttons. A non-visual
component is not visible at run time (a timer, for example) displays
differently at run time (a menu bar, for example). Non-visual components
are also called invisible components. Some components can contain
other components, such as an application window that contains a button;
these components are called containers.

In Visual Cafe, you add components to forms to assemble applets and
applications. You can drag and drop components into other components,
creating a project in a visual manner.

Components can accept input from a user and perform specific actions (for
example, a user could click a button that caused an animation to play).
Visual components can also be used to display the results of an action (for
example, clicking a button could display the results of a mathematical
operation).

Visual components generally have the following attributes:

◆ A set of properties – Governs how components display and behave.
Properties are accessible from the Property List.

◆ A visual element – Defines the appearance of a component at run time.
The component is shown as an icon in the Project window; you can
edit the component by double-clicking the icon to open it.

◆ One or more interactions – A relationship between two components is
called an interaction. As you create interactions by connecting
components, Visual Cafe automatically generates code for the
relationship, allowing you to assemble interactive applets and
applications without writing code. Interactions are not an integral part
of all components. (For more information, see Chapter 9, “Working
with Events and Interactions.”)

◆ A set of event method(s) – In Visual Cafe, interactions are
implemented as methods and imply an event notification. You can
access this Java code from the Source window.

Each of these component attributes has its own editor, from the Form
Designer to the Interaction Editor, making it easy to manipulate visual
components. You create cross-platform Java applets and applications by
first designing the user interface components and then using the various
Visual Cafe tools to automate the process of deriving classes, creating
interactions, and mapping functions to visual components and messages.
7-3

Chapter 7: Working with Components
You can do most of these tasks by setting properties to define, refine, and
control the appearance and behavior of your visual components.

About top-level components

A top-level component is a component that appears at the top level of
the Project window’s Objects view. Top-level components include
Applet , Frame , Window, and some dialog components. In the
Component Library, the top-level components are all in the Forms group.
You can position other components, such as text, buttons, and graphics, on
the top-level component in the Form Designer, making the top-level
component a container for these components.

A top-level component corresponds to a Java source file. Visual Cafe
automatically creates the Java code and updates the code as you visually
design your GUI.

The top-level component for an applet is the Applet component. The
init method, which is called by another program (such as a Web
browser), is the entry point of the applet. If you use the AWT Applet
project template provided with Visual Cafe, the applet is already set up for
you programmatically.

The top-level component for an application with a GUI is the Frame
component. The main method, usually called from the command line, is
the entry point of the application. If you use the AWT Application template
provided with Visual Cafe, the main window is already set up for you
programmatically.

Component is the parent class from which all visual components and
containers are derived. This class defines objects with properties (size and
position, for example), methods, and events that enable the objects to be
rendered on the screen and respond to events.

All visual components in the Component Palette are component
subclasses. Component is an abstract class and cannot be instantiated.

With Visual Cafe, you can define a component in several ways:

◆ You can subclass Component directly (thereby making a lightweight
component; see “About lightweight and heavyweight components” on
page 7-6 for more information), provided you define a public
constructor
7-4

About components
◆ You can subclass any standard AWT component subclasses

◆ You can subclass one of your own component subclasses, or one of
the Beans in the Component Library

About containers

Java defines a container as a component that can hold any number of
components, such as text, buttons, and graphics. A container can also hold
other containers. Containers allow you to group related components and
treat them as a single unit, reducing the amount of programming you have
to do.

Containers hold and organize your components, but they may also contain
code for event handling and many essential tasks such as changing the
cursor’s appearance and the program’s icon. All containers support
operations such as adding, removing, and painting the components they
contain.

In general, while components are independent objects, there is a certain
parent-child relationship that exists between containers and other
components. To better understand the idea of containers, think of all
visual components as children of the form on which they are displayed.
Most components inherit the read-only parent property, which displays the
form. The placement of visual components is also relative to the parent
form. Visual components cannot be moved outside the boundaries of the
parent; moving a form moves the child components as well.

The top-level containers, or forms, are Applet , Frame , Window, and
some dialogs. Applications are built on Frame containers and applets are
built on Applet containers. Other containers are panels, MenuBar ,
Menu, and some dialogs. (A panel is a container that you use to group a
window into logical regions.) These containers can be contained by a
form, but are not forms themselves.

When you select an applet template, Visual Cafe automatically provides
you with an Applet component as the parent container for your project.
When you select an application template, Visual Cafe automatically
provides you with a Frame component as the parent container for your
project.
7-5

Chapter 7: Working with Components
The top-level containers are described in the following table:

In the AWT, components are added to containers and then arranged by
layout managers (see “Arranging components” on page 7-37 for more
information). In addition to components and containers, there are a variety
of event handling, menu, fonts, and graphics classes. The AWT also works
well in conjunction with the networking and threads classes.

About lightweight and heavyweight components

A direct subclass of Component is a lightweight component. A lightweight
component is written in pure Java, and therefore isn’t defined by a native-
code peer component, as are heavyweight components. A lightweight
component does not necessarily draw its background color, which means
that by default lightweight components are transparent. A direct subclass of
Container is also lightweight. A subclass of any other AWT component
class is heavyweight.

Heavyweight components always display over lightweight components that
are in the same container. This is because lightweight components use the
drawing context of their nearest heavyweight container, while heavyweight
components create their own drawing context. For information on mixing
lightweight and heavyweight components, see “Mixing lightweight and
heavyweight components” on page 8-26.

Container Function

Window A window.

Frame Extends Window. It supports a title bar and menu bars, can be
minimized, and must be a parent container.

Dialog Extends Window. A dialog box that can be shown and
dismissed apart from its parent window.

Applet A panel that can be embedded in a Web page. Applet
containers are parents to applet programs. Applets cannot be
nested.
7-6

About the Component Library
About the Component Library

The Component Library is a repository for storing, organizing, and
displaying components and project templates. When you install Visual
Cafe, all of the standard Java components plus many additional Symantec
components and project templates are displayed in the Component Library.

The items in the Component Library are reusable. Once you design a form
or component and place it in the Component Library, you can use it in
other projects. For example, you can start a new project with a project
template you designed, then drag components from the Component
Library into the Project window or Form Designer to use them in the new
project.

To display the Component Library:

◆ Choose Component Library from the View menu.

Using the Component Library

You have a good deal of control over the components in the Component
Library. In the following sections you’ll learn how to add components –
including custom components – to the Component Library, rearrange the
components in the Library, and delete components from the Library.

Create a new group of
components just as you would
create a new folder in
Windows Explorer.

You can also easily rename or
delete groups from the
Component Library, just as
you would in Windows
Explorer.
7-7

Chapter 7: Working with Components
Adding components to the Component Library

To easily access components, you can add them to the Component Library.
For information about adding a JavaBeans component to the Component
Library, see “Automatically updating Beans in the Component Library” on
page 10-19 and “Adding an existing Bean to the Component Library” on
page 10-21.

To add a component, you insert a .class or .jar file.

Note: Some components have more than one class file, such as if the Java
source file for a component has inner classes. You need to make sure that
these class files are in the class path. You do not need to add inner classes
to the Component Library.

An inner class (or nested class) is a class that’s included within the body
of another class, even within a method (called a local class). This feature is
new with JDK 1.1 and is useful for creating adapter classes. After
compilation, the inner class ends up in its own class file, which has a dollar
sign ($) in its name.

To add components to the Component Library:

◆ Choose Add Component into Library from the File menu and insert a
.jar or .class file.

or

◆ Drag and drop a .jar or .class file from a file system window,
such as the Windows Explorer.

Caution: After you add a component, you should not move its
corresponding .class or .jar file, because Visual Cafe looks for it in
that location. If you move the component, you should re-add it to the
library. Some components are made of more than one class file (for
example, if the Java source file for a component has inner classes). You
need to make sure these class files are in the class path. You do not need
to add inner classes to the Component Library.
7-8

Using the Component Library
Creating a component template

Another way of adding a component to the Component Library is to create
a component template. You can then use this component template as a
starting point for other components you create.

To create a component template:

◆ Drag a component from the Project window (Objects view) to the
Component Library.

The source file is copied by Visual Cafe, so you don’t have to keep
the files in the same location. A component and a component
template appear the same in the Component Library, and you add
them to projects in the same way.

For information about creating project templates, see “Creating a
project template” on page 3-28.

Adding custom components

You can customize the Component Library by adding third-party
components and your own custom components and project templates. For
example, if there’s a certain type of form you use often, you can create it
and then add the form – including the components it contains and its
properties – to the Component Library. You can also edit the default
behaviors of a component by selecting it in the Component Library and
modifying its properties in the Property List (see “About the Property List”
on page 7-34 for more information).

If you’ve modified a Visual Cafe component (see “Modifying component
properties” on page 7-36) and want to place it in the Component Library,
all you have to do is drag the component from the Project window’s
Objects view into the Component Library. However, if you want to add
custom components that are not based on the Visual Cafe components,
you can add them to Visual Cafe as follows.

To add custom components to a project:

◆ Insert the components’ source files into your project

or

◆ Add the custom components using the JavaBean Wizard. (See
“Creating a Bean” on page 10-10 for more information.)
7-9

Chapter 7: Working with Components
Note: You only need to add custom components to the Component Library
if you want to visually select and use the custom component with Visual
Cafe views. Custom components can be referenced in the program’s Java
code without being integrated into Visual Cafe.

Adding a group to the Component Library

Components are stored in groups, represented by a folder icon, so you can
organize your components.

To create a new group in the Component Library:

1 From the File menu, choose Window, then Component Library.

2 Choose Group from the Insert menu to add a new group to the
Component Library.

A new folder appears in the Component Library, as shown here:

3 Click on the new folder and enter a name for the new group.

The new group is displayed in the Component Library.

4 Add components to the new group by dragging them into the
folder.
7-10

About the Component Palette
Moving components within the Component Library

You can rearrange components within the Component Library. Simply
select the component (in the Objects view of the Project window or in the
Form Designer) and drag it to a new location in the Component Library.

To rearrange components and groups already in the Component Library,
simply select a component or group and drag it to a new location.

Deleting components from the Component Library

As you’re developing your project, you can delete user-created
components from the Component Library. Deleting a component from the
Library also removes the component from the Component Palette (see the
following section).

To delete a component from the Component Library:

1 In the Component Library, select the component yu wish to delete.

2 Choose Cut from the Edit menu (or press the DELETE key).

Note: All JavaBeans components in a JAR file (as specified in the
manifest file) are added to the Component Library. You cannot
remove one component independently of the others in the JAR
file. Instead, you need to recreate the JAR and not include the
unwanted component. For more information, see “About JAR files”
on page 5-54.

About the Component Palette

At the top of the main Visual Cafe window is the Component Palette,
which presents a number of icons that you can click to work with
components. You can think of the Component Palette as another view of
the Component Library, but with easier access and more customization
capabilities. The Component Library contains everything that the
Component Palette contains, but the Component Library can contain more
(such as project templates, which don’t appear in the Component Palette).
7-11

Chapter 7: Working with Components
Like the Component Library, the Component Palette contains a variety of
reuasable components and form templates. You can drag components from
the Component Palette to the Form Designer or Project window to add
them to a project.

Visual Cafe provides an extensive collection of custom and third-party
components that you can quickly add to your forms from the Component
Palette. You can add groups as well as individual components. When you
add groups to the Component Palette, they are arranged into tabs.

You can add any component from the Component Library to the
Component Palette and easily use the component in your applets and
applications. You can add components in other ways as well; see “Adding
a component or group to the Component Palette” on page 7-16 for further
information.

If you wish, you can customize the Component Palette by using the
Environment Options dialog box, which allows you to add and remove
components, create new tabs, and reorganize components within groups.
For more information, see “Customizing the Component Palette” on
page 7-13.

Here’s an example of what the Component Palette looks like:

Similar components (such as Swing, AWT, and so on) are grouped together
into tabs.

Also on the Component Palette are these buttons:

The Selection Tool is enabled by default. You can click this icon to return
to component-selection mode if you’re not in it already. To select a
component in the Form Designer, click on it with the Selection Tool arrow
or use the Selection Tool to surround the entire component with a
selection rectangle.

The Interaction Tool lets you create an interaction between two
components by visually connecting them. After you complete an
interaction, the Selection Tool (see above) is selected and the Interaction
Tool is not selected. For more information about interactions, see
Chapter 9, “Working with Events and Interactions.”
7-12

About the Component Palette
Component Palette display options

You can control the Component Palette’s position and visibility by docking,
floating, resizing, or hiding it.

To float the Component Palette:

◆ Drag the Component Palette from the top of the Visual Cafe window
onto your desktop.

or

◆ Double-click somewhere in the Component Palettes’s background.

To dock the Component Palette:

◆ Drag the Component Palette to the top of the Visual Cafe window.

or

◆ Double-click somewhere in the Component Palettes’s background.

To show the Component Palette:

◆ Right-click in the background of the main Visual Cafe window and
select Component Palette from the pop-up menu.

To hide the Component Palette:

◆ Right-click in the background of the main Visual Cafe window and
deselect Component Palette in the pop-up menu.

or

◆ Click the Component Palette’s close box.

Customizing the Component Palette

You can customize the Component Palette in a variety of ways, adding
components and groups, moving components and groups, or renaming
tabs.

You can also customize the Component Palette to contain the objects that
you use most often. Visual Cafe provides a extensive collection of custom
7-13

Chapter 7: Working with Components
and third-party objects that you can quickly add to your forms, including
grids and tabbed dialog boxes.

You customize the Component Palette from the Component Palette page of
the Environment Options dialog box.

To access the Component Palette page in Environment Options:

◆ Choose Environment Options from the Tools menu, then click the
Component Palette tab in the Environment Options dialog box.

or

◆ Right-click the Component Palette, then choose Customize Palette.
7-14

About the Component Palette
The Component Palette page in the Environment Options dialog box
appears. Here’s an example of the Component Palette page:

The Component Palette tab provides two panes for component display. The
Available Components pane contains the same set of components as the
Component Library. The Palette pane represents the Component Palette’s
tabbed toolbar.

Folders in the Palette pane represent groups, which are displayed in the
Component Palette as tabs, and the components in each folder display as
icons in the Palette pane.

To customize the Component Palette, you can:

◆ add components

In the right pane
you’ll see what
items are in the
Component
Palette.

In the left pane
you’ll see the
items available in
the Component
Library.
7-15

Chapter 7: Working with Components
◆ delete components

◆ group components in tabs

◆ create or remove a tab

These features are discussed in the following sections.

Adding a component or group to the Component Palette

You can add a component or a group – which will appear as a tab – to the
Component Palette in one of two ways: by using drag-and-drop or by
using the Add button. You can also drag components from the Project
window to the Component Palette.

To add a component or group by dragging it from the Environment
Options dialog box:

1 Choose Environment Options from the Tools menu, then click the
Component Palette tab in the Environment Options dialog box.

The contents of the Component Palette are displayed in the Palette
pane.

2 Select a component or group from the Available Components pane
and drag it onto a Component Palette group or into the general
Component Palette area.

Dragging a component adds it to the current Component Palette
group. Dropping the component onto another component adds the
selected component to the same group as the target component.

Dragging a group creates a new tab in the Component Palette.

To add a component or group by using the Add button in the
Environment Options dialog box:

1 Choose Environment Options from the Tools menu, then click the
Component Palette tab.

The contents of the Component Palette are displayed in the Palette
pane.

2 Select a group in the Palette pane.

3 Select a component in the Available Components listing.

4 Click the Add button.

The selected component is added to the selected group.
7-16

About the Component Palette
To add a group by using the New Group button in the Environment
Options dialog box:

1 Choose Environment Options from the Tools menu, then click the
Component Palette tab.

The contents of the Component Palette are displayed in the Palette
pane.

2 Click the New Group button.

Type a name for the group item.

Note: After you’ve added a new component to a new tab in the
Component Palette, the group and the component are added to
the Component Library.

To add components from the Project window:

1 Select the component in the Project window.

2 Drag-and-drop the component onto the tab of the Component
Palette where you want the component to be stored.

Note: After you’ve added a new component to a new tab in the
Component Palette, the group and the component are added to
the Component Library.

To add components from the Component Library:

Use one of these methods:

◆ Drag the component from the Component Library and drop it on the
tab of the Component Palette where you want the icon placed. Visual
Cafe displays a message if the addition duplicates an existing
component on the Component Palette. Duplicates are not allowed in
the same tab.

◆ Select one or more components, then right-click and choose Add to
Palette. This command is available only if the selected components are
not currently on the Component Palette.

◆ Drag-and-drop a group from the Component Library to create a tab on
the Component Palette. The tab contains all components in the group.
7-17

Chapter 7: Working with Components
Moving components on tabs

You can move Component Palette components within their group or to
another group. (Groups are represented by tabs.)

Within the Component Palette toolbar, you can drag and drop components
within the same tab to reorganize their display.

To move components within the same tab:

1 Choose Tools, Environment Options, then select the Component Palette
tab.

2 Select a component and use the Up and Down Arrow buttons to
reorganize the display order.

3 Click OK.

The changes take effect immediately.

Tip: You can also drag and drop components within the same group to
reorganize their display.

To move components to another tab:

1 Choose Environment Options from the Tools menu, then click the
Component Palette tab.

2 Select a component and drag the component to a new location.

3 Use the Up and Down Arrow buttons to reposition the
component.

The component is now in its new location.

4 Click OK.

The changes take effect immediately.

Deleting a component or group

As you use Visual Cafe, you may need to remove objects from the
Component Palette if you no longer need them on a frequent basis.

You can delete components or group tabs from the Component Palette tab
of the Environment Options dialog box, or you can delete tabs directly
from the Component Palette itself.
7-18

About the Component Palette
Note: Deleting a tab deletes the group and all components within the tab.
However, it does not delete them from the Component Library.

To delete a component from the Component Palette directly:

1 Click a component on the Component Palette.

2 Right-click and select Remove Component.

The component is removed from the Component Palette.

To delete a tab from the Component Palette directly:

1 Right-click a tab on the Component Palette.

2 Select Remove Tab.

To delete a component or tab from the Component Palette by using
the Environment Options dialog box:

1 Choose Environment Options from the Tools menu, then click the
Component Palette tab.

2 In the Palette pane, select the component or group to delete.

3 Click the Remove button or press the DELETE key.

4 Click OK or Apply.

The component or tab is removed from the Component Palette.

Renaming tabs

As you organize components on the Component Palette, you may find that
you need to rename a component tab.

To rename a tab:

1 Choose Environment Options from the Tools menu, then click the
Component Palette tab.

2 Slowly double-click the tab (or select the tab and press F2), and
type a new name.

3 Click OK or Apply.

The changes take effect immediately.
7-19

Chapter 7: Working with Components
About forms

Forms are the basis for creating a user interface to your applets and
applications. Forms can be windows that display information and can
receive user input. A form can contain labels that display text, or can
contain components that provide interaction with the program. The most
common types of forms are:

◆ Window

◆ Frame

◆ Dialog

◆ Applet

See “About top-level components” on page 7-4 for more information on
these form types.

You can also use forms as containers for items that are not visible
components in a user interface. For example, you can have a form in an
application that serves as a container for other components that will be
used in other programs. Or, you can have a container that contains code
that handles events like mouse interactions. See “About containers” on
page 7-5 for more information.

If you look in the Component Library, the forms provided with Visual Cafe
are all in one Forms group.

About the Form Designer

The Form Designer is the main tool for designing the interface to your
applet or application. You use it to design windows, dialog boxes, message
boxes, and other visual components. The Form Designer uses an integrated
Java Virtual Machine (VM) to run Java code at design time. This allows the
Form Designer to provide a true what-you-see-is-what-you-get
(WYSIWYG) design environment, including the accurate representation of
complex layouts using the various Java layout managers. It also allows the
Form Designer to run Java components and applets at design time so that
the effects of run-time factors (an on-screen animation, for example) can
be previewed in the layout design.
7-20

About forms
The Form Designer is fully integrated into the Visual Cafe development
environment. As you design your forms the source code, properties, and
project are dynamically kept in sync.

Note: While you’re working in Visual Cafe you can have multiple Form
Designer windows open at once, one per form.

When you’re working on a form you can drag components from the
Component Library, Component Palette, or Project window onto the Form
Designer. The components appear as dotted-line rectangles that contain
the component name. You can drag components in the Form Designer to
arrange them, as well as perform other operations such as resizing or
deleting them. See “Working with forms and components” on page 7-26 for
details.

Here’s an example of what a form looks like in the Form Designer:

The Form Designer has been improved in version 3.0 of Visual Cafe. In
earlier versions, the Form Designer window size was the size of your form.
Now the Form Designer window size is not dependent on the size of your
form; if your form is larger than the Form Designer window, you can use
scroll bars to move around the form.

Dotted line
outlines
border of
component

Scroll bars
allow you to
design larger
forms with
ease

The currently selected component
or components have handles
around their borders. Drag these
squares to resize the component(s).
7-21

Chapter 7: Working with Components
Dragging and dropping into the Form Designer

You can use standard Windows operating system techniques for dragging
and dropping components into a form displayed in the Form Designer.

When you drag a component, a plus sign (+) appears over the cursor when
a copy operation is being performed.

Visual Cafe does not allow inappropriate copies and moves, such as
dropping a top-leval component into a container. If you see a circle with a
slash through it while you’re dragging a component, that means the
operation is not allowed.

 You can drag components to and from the following locations:

Form Designer shortcuts

The following table shows a list of keyboard shortcuts for working in the
Form Designer:

Drag from... Into... Result

Component
Library or Palette

Form Designer Copies the component to the new
project (in other words, instantiates the
component).

Project window Form Designer in same project Moves the item to the Form Designer.
(Press CTRL and drag an item to copy
it instead of move it.)

Project window Form Designer in different project Copies the file or component to the
new project.

Form Designer Form Designer in same project Moves the component to a new
location in the Form Designer. (Press
CTRL and drag to copy a component
instead of move it.)

Form Designer Form Designer in different project Copies the component to the second
Form Designer

Shortcut Result

CTRL-click Selects each component, in addition to
previously selected components.
7-22

About forms
Displaying graphics in the Form Designer

When you have applets that have an image (.gif file) drawn by the
paint() method, the image appears in browsers and in the
AppletViewer. However, it may not appear in the Form Designer.

To have your images display at design time in the Form Designer, use the
AWT-based ImageViewer , ImageButton , or ImagePanel component,
or the Swing-based ImageIcon component.

Displaying non-visual components in the Form Designer

A non-visual component is a component that’s not visible at run time,
such as a timer, or displays in a different way in the Form Designer and at
run time, such as a menu bar. It does not extend from the Java Component
class. In the Form Designer, a non-visual component is represented by an
icon. The icon is simply a visual indicator that the component is included,
and does not affect the form layout.

Non-visual components give you access to prewritten functionality such as
File Open dialog boxes—functionality that is platform-specific and shares a
set of basic capabilities.

Note: When you add a non-visual component to a form, all non-visual
components in the form display automatically.

It’s useful to see non-visual components in the Form Designer, but
displaying them can clutter a form and make it difficult to see visual
components. Turning off the display of invisible components can make
form development easier.

Arrow keys Moves selected components one pixel.

CTRL-Arrow keys Enlarges selected components one pixel in
the indicated direction.

TAB/SHIFT-TAB keys Selects the next or previous component,
respectively.

Shortcut Result
7-23

Chapter 7: Working with Components
To toggle the display of invisible components:

◆ While the Form Designer is the active window, choose Invisibles
from the Layout menu.

❖ If Invisibles is checked, non-visual components are displayed in
your form.

❖ If Invisibles is not checked, non-visual components are not
displayed in your form.

Enabling and disabling borders around components

In the Form Designer, you can choose to display dotted-line borders
around components so that you can see boundaries of components. This is
helpful in cases where you use non-visual components. If you wish, you
can disable the borders.

To enable or disable borders around components:

1 With the Form Designer active, choose Borders from the Layout
menu.

This displays borders around components in the Form Designer.

2 Select Borders again to disable borders around components.

Using virtual fonts

Visual Cafe supports the Java virtual font classes, which you can use to
ensure cross-platform compatibility. To use virtual fonts, specify Serif,
Sans-serif, Monospaced, Dialog, or DialogInput in your
7-24

Overview of designing a GUI
programs, rather than a particular typeface such as Times or Helvetica.
Note that virtual font classes are no longer mapped to non-Latin1 classes of
fonts (non-Latin1 characters are for languages such as Korean, Japanese,
and so forth).

To select a virtual font class:

1 Select a component that uses text.

2 In the Property List, select the Font Name property.

A list of font classes displays.

3 Choose a font class from the list of classes.

Your component’s text changes to the appropriate font.

For information on default font properties, see the font.properties
file in your Visual Cafe \Java\Lib folder.

Overview of designing a GUI

With Visual Cafe, you can add graphical user interface (GUI) elements
to your applets or applications and define how those elements should
interact with your applet or application.

Every time you drag and drop a visual component onto the form in the
Form Designer or edit properties for a component using the Property List,
Visual Cafe updates the source file for you.

This section lists the basic procedure for designing a GUI for your project.
The concepts outlined here are described in detail later in the chapter.

To design your graphical user interface:

1 Add forms to your project.

You may already have some forms in your project if the project
template added forms automatically when you created your project.

For details on this step, see “Adding a form to a project” on
page 7-26.

2 Add components to your forms.

For details on this step, see “Adding components to a form” on
page 7-27.

3 Arrange the components on the form.
7-25

Chapter 7: Working with Components
For details on this step, see “Arranging components” on page 7-37.

4 Modify the components’ properties.

For details on using the Property List, see “Working with component
properties” on page 7-34.

For details on using customizers, see “Using a customizer to configure
a component on a form” on page 10-26.

5 Create component interactions.

For more information, see Chapter 9, “Working with Events and
Interactions.”

Working with forms and components

In this section you’ll learn how to use the Form Designer to create forms
and add them to your projects. Step-by-step instuctions for adding a form
to a project and adding components to a form are provided.

Accessing the Form Designer

To work on a form, you need to access the Form Designer. When you
open a new Visual Cafe project, a blank Form Designer is displayed. If
you’ve already created a form and want to work on it, you can access the
Form Designer in either of two ways.

To access the Form Designer:

◆ Double-click the form in the Objects view of the Project window.

or

◆ Right-click the form in the Objects view of the Project window and
choose Edit form from the pop-up menu.

Adding a form to a project

You can add a form to a project by using the Insert menu or by using drag-
and-drop.
7-26

Working with forms and components
To add a form using the Insert menu:

1 While the project is selected, choose Form from the Insert menu.

2 Select a form template from the Insert Form dialog box.

3 Click OK.

The new form is added to the project and the Form Designer opens.

To add a form using drag-and-drop:

◆ Drag a form from any of the following areas into the Project
window:

❖ The Component Palette

❖ The Component Library

❖ The same Project window (press CTRL and drag to copy the
form)

❖ A different Project window

The new form is added to the project and the Form Designer opens.

In addition, any source file that contains a subclass of Applet , Dialog,
Frame , or Window will add a top-level container to the Objects view of
the Project window, as well as a form to the project. Unless the Enable RAD
for new files option (in the Project Options dialog box) is unchecked, Visual
Cafe parses the file to extract information about the component classes
defined in the file.

Note: If the parse fails, you will see a file in the Packages and Files view,
but not an object in the Objects view of the Project window. You probably
need to correct the Java code to get the file to parse. See “Adding custom
code to a source file” on page 4-48 for more information.

Adding components to a form

After you add a form to a project, you can add components to it and
arrange the components in the Form Designer. For more information about
adding a component to a project, see “Adding a component to a project”
on page 3-49.
7-27

Chapter 7: Working with Components
Not all components are appropriate for all types of forms. The following
table describes the relationship between form types and their valid
components.

When a component is selected and you move the cursor over a handle (the
small black box at the corner of the rectangle that represents a
component), the cursor changes to a two-way arrow, which means you
can hold down the mouse button and drag to resize the component.

When a component is selected and you move the cursor over it, the cursor
changes to a four-way arrow, which indicates that you can click and drag
the component to another location.

To select multiple components, SHIFT-click them or drag the cursor over
them.

Note: The placement and size of a component might be restricted if you
are using a layout manager.

There are several considerations to keep in mind if you want to overlap
components. See “Overlapping components in applets” on page 7-32 for
more information.

To add a component to a form:

1 Add the component by using one of these methods:

❖ Use the Insert menu

❖ Drag the component from the Component Palette to the Project
window

❖ Drag the component from the Component Palette to the Form
Designer

❖ Drag the component from the Component Library to the Form
Designer

❖ Drag the component from the Component Library to the Project
window

2 Size the component if no layout manager is in use.

Form type Valid components

Frame Menus and all components

Applet All components except menus and forms
7-28

Working with forms and components
3 While the component is selected, type a name for the component
in the Property List. The name should not contain spaces.

4 Change component properties in the Property List as needed.

5 From the File menu, choose Save to save your changes.

Copying components

You can copy a component by dragging it from the following areas into the
Project window, Form Designer, or Menu Designer:

◆ The Component Palette or Component Library

◆ A Project window or Form Designer in the same project (press CTRL
and drag to copy the component)

◆ A Project window or Form Designer in a different project

Note: Only menu components can be placed into the Menu Designer. See
“Creating AWT-based menus” on page 7-48 for information about the Menu
Designer.

You can copy form components and menu bars to another form, within the
same form, or to another project by:

◆ dragging and dropping the component to a different form

◆ copying and pasting the component with menu commands

◆ copying and pasting the component with Toolbar icons

◆ right-clicking the component and using the Copy and Paste pop-up
menu commands

◆ selecting the component and using the copy and paste keyboard
commands

When you copy a component, keep the following concerns in mind:

◆ The object’s bound events are not moved to the new location.

◆ You must manually move any of your own code to the new form.

◆ Forms and components must have unique names. If necessary, an
object is renamed when pasted.
7-29

Chapter 7: Working with Components
◆ If you copy and paste a top-level container, the corresponding Java file
is duplicated and placed in the target project directory.

◆ If you copy and paste a component in a container, Java code that is
needed to create and initialize that component is generated in the Java
file of the top-level container. Only component code that is
automatically generated by Visual Cafe is placed in the Java file. This
does not include custom code and interactions.

◆ Visual Cafe allows only appropriate copies; for example, a component
that is not a container cannot be copied to the top level. While you’re
dragging, a circle with a slash through it indicates that the operation is
not allowed.

You can copy components between the Project window (Objects view),
Form Designer, and Menu Designer as needed.

To copy and paste a component:

1 Open the project(s) you want to use.

2 Click the Objects tab in the Project window, or open the Form
Designer or Menu Designer, then select the component you want
to copy.

3 Choose Copy from the Edit menu, or right-click and choose Copy,
or click the Toolbar’s Copy button.

4 If you want to paste the component within another container,
select that container.

5 While the target Project window (Objects view), Form Designer, or
Menu Designer is active, choose Paste from the Edit menu.
Alternatively, you can right-click and choose Paste, or click the
Toolbar’s Paste button.

The component appears in the Project window. If necessary, the
component is renamed to prevent name conflicts.

To copy a component by dragging it:

◆ Do either of the following:

❖ To copy and drag a component within the same project, press
CTRL and drag the component to the location where you want
it.

❖ To copy and drag a component to a different project, drag the
component to the location where you want it.
7-30

Working with forms and components
Deleting components

You can easily delete a component from the Objects view of the Project
window or from the Form Designer.

If you delete a top-level container in the Objects view, the corresponding
.java file is deleted from the project and the other views. The file is not
deleted from the folder on your hard disk; you must manually delete it.

Note: If you want to delete a file, you should first delete it from the project
and then delete it using the Windows operating system commands. Do not
delete a file using the Windows operating system commands before first
deleting it from the project.

If you delete a component from a container, any code that was
automatically generated by Visual Cafe is deleted. You’ll be prompted to
remove interactions and bound events associated with the component. If
you delete a component’s code from a Java file, the component is removed
from the Project window after you click outside the Source window or save
the Java file.

If you delete a component that’s associated with an event or interaction,
Visual Cafe asks you if you want to remove event bindings, keep them, or
cancel the deletion. If the event bindings and interactions are removed,
your code will compile. For more information about events and
interactions, see Chapter 9, “Working with Events and Interactions.”

Note: To avoid deleting the wrong code or not deleting enough code, we
recommend that you delete components from the Project window or the
Form Designer instead of from the source code. Then delete any custom
code or interactions from the source code. For information on deleting
interactions, see “Deleting an interaction” on page 9-17.

To delete a component:

◆ Do either of the following:

❖ Select the component in either the Form Designer or the Project
window and press DELETE.

❖ Select the component and choose Cut from the Edit menu, right-
click on the component and choose Cut from the pop-up menu.
7-31

Chapter 7: Working with Components
Renaming a component

You can rename the components listed in the Objects view of the Project
window. If you rename a top-level container, the corresponding Java file
name changes. If you rename a component in a container, the Java code of
the top-level container changes for that component. Visual Cafe changes
the component name in the entire Java source file, even in custom code.

You can rename components from either the Project window or the
Property List.

To rename a component from the Project window:

Do any of the following:

1 Click the Objects tab in the Project window, and select the
component name.

2 Press TAB and retype the name in the field.

3 Press ENTER or click somewhere else when you’re finished.

or

1 Click the Objects tab in the Project window.

2 Slowly double-click the component name and then type the new
name in the field.

3 Press ENTER or click somewhere else when you’re finished.

or

1 Select the component in the Objects view of the Project window.

2 Press F2.

3 Type the new name in the field.

To rename a component from the Property List:

◆ Make your project active, then change the Name property of the
component in the Property List. See “About the Property List” on
page 7-34 for more information.

Overlapping components in applets

Different Web browsers use a different “z-order” (see “Determining
component z-order (display order)” on page 8-21 for information) when
7-32

Working with forms and components
determining how components overlap in an applet. The Project window
displays the order, and the browser can read it from top to bottom or from
bottom to top. For example, if an InvisibleHTMLLink is on top of an
image, you need to make sure it ends up on top for users to be able to
click it. To ensure compatibility with different browsers, it’s a good idea to
“sandwich” the InvisibleHTMLLink s on top and beneath lightweight
components they overlap. Use Send to Back or Send to Front from the Layout
menu to do so.

You need to pay attention to whether heavyweight and lightweight
components overlap, because heavyweight components always display
over lightweight components. See “About lightweight and heavyweight
components” on page 7-6 for more information.

Tabbing between fields on a form

You can allow users to tab between fields on a form by making use of the
default tab order provided with JDK 1.1. The default order is the order in
which the components are added to the form.

You can also establish a tab order by placing the fields in a
KeyPressManagerPanel container.

In both cases, the tab order of the components (those contained by the
panel if you’re using one) is listed in the Objects view of the Project
window. To change the tab order, change the order of the components in
the Project window list. You can also reorder the components visually in
the Form Designer.

In your application, the user presses the TAB key to move to the next
component you’ve specified in your tab order, such as a text-entry field in
an online order form. Pressing SHIFT-TAB returns to the previous
component in the tab order.

Adding a dialog box to a form

In the Component Library, dialog boxes are located in the Forms group.
Some of the dialog boxes are top-level components and some must be
contained by a top-level component. See the Components Reference in the
Online Help for more information.
7-33

Chapter 7: Working with Components
To add a dialog box:

1 Drag a Dialog component from the Component Palette or
Component Library onto the Form Designer.

For details on this step, see “Adding components to a form” on
page 7-27 or “Adding a component to a project” on page 3-49.

2 Connect the dialog to a trigger component by using the Interaction
Wizard.

For details on this step, see “Starting an interaction” on page 9-6.

Working with component properties

Each component has a set of properties that define its appearance and
behavior. Visual Cafe provides a Property List from which you can directly
modify these properties. When you change a property, the source code
and Form Designer are immediately updated. If you change a property for
an object in the Component Library, you’ll see the changes the next time
you create a new object.

About the Property List

The Property List displays properties and values for the currently selected
component or components. You can select a component from the Form
Designer, Project window, Component Library, or the Property List’s pull-
down menu.

Note: When multiple components are selected, only their common
properties are shown and editable.

To display the Property List:

◆ Choose Property List from the View menu.
7-34

Working with component properties
Properties with values that can be expanded are marked with a plus sign
(+); for example, the Font property. Properties that are defined using a
custom editor are marked with an ellipsis button (…).

Components may also have a customizer, a tool that helps guide Bean
developers through the process of changing a component. A customizer
can configure more than one property at a time. You can access a
customizer from the Property List. See “Using a customizer to configure a
component on a form” on page 10-26 for more information.

Some components can have what are called expert properties. The
programmer who coded a particular component may have decided that its
properties are expert properties, specialized properties that most users
won’t normally need. (For example, in the Visual Cafe environment,
AlignmentX and AlignmentY are expert properties.) Expert properties
are displayed in the Property List only when you tell Visual Cafe to display
them.
7-35

Chapter 7: Working with Components
To display expert properties:

◆ Click the Property List tab in the Environment Options dialog box,
as shown here:

Modifying component properties

You can modify properties for one or more components at a time by using
the Property List.
7-36

Arranging components
Tip: Remember that if you change the properties of a component in the
Component Library, the change now appears every time you add that
component to a project. Projects that already contained the component
before the change are not affected.

To modify component properties:

1 To display the Property List, choose Property List from the View
menu.

2 Select a component in the Form Designer, Project window,
Component Library, or the Property List’s pull-down menu. To
select multiple components, CTRL-click in the Form Designer,
Project window, or Component Library, or SHIFT-click or drag in
the Form Designer.

When multiple components are selected, only their common
properties are shown and editable. In the Property List, you see the
heading Multiple Selection.

3 To edit a property, click the right column, double-click the left
column, or use TAB in the Property List.

The right column displays a list of valid values or makes the text
string editable.

Properties with multiple values (for example, the Font property) are
marked with a plus sign (+). Click the plus sign (+) to expand the list.

Properties that are defined using a custom editor are marked with the
ellipsis button (…). Click the … button to display the custom editor.

4 Press ENTER or click somewhere else to make the change.

The change is applied to all selected components.

Note: Press ESC to cancel an edit and return the property to its
previous value.

Arranging components

The Java language provides several layout managers (also called
layouts) that help you arrange components inside a container so they’ll
maintain a uniform appearance across multiple platforms and Web
browsers, and at varied screen sizes and resolutions.
7-37

Chapter 7: Working with Components
The available layouts for AWT components are:

◆ BorderLayout

◆ CardLayout

◆ FlowLayout

◆ GridLayout

◆ GridBagLayout

These layouts are described in the following sections.

You can also use a layout called BoxLayout to arrange your AWT
components, even though this layout is part of the JFC Swing layout
manager set. For more information on BoxLayout and other Swing layout
managers, see “Choosing a layout manager for a container” on page 8-14.

Different AWT containers have different default layout managers. For
example, the default layout manager for Panel is FlowLayout , while the
default for Frame is BorderLayout . Visual Cafe, however, defaults the
layout property of all other containers to None. When there is no layout
manager, components in a container are positioned and sized exactly as
you specify.

The way AWT components appear on the screen is determined by the
order in which components are added to the panel that contains them, and
the layout manager the panel is using to display them on the screen. The
layout manager determines which components within that panel will be
displayed.

Visual Cafe supports all standard Java layout managers. You can add a
layout to a form (or panel) by setting the form’s layout property. When you
change the property, the components inside the layout are immediately
arranged based on their creation order and the specified layout. You can
rearrange components in the layout by dragging and dropping to the
desired location.
7-38

Arranging components
You can group components in panels on your form and use different
layout managers to suit the components contained by the panel.

Manipulating the Form Designer grid

While you’re designing a form, the Form Designer grid is useful in laying
out the components in the form.

To open the Grid Options dialog box:

◆ While a Form Designer is the active window, choose Grid Options
from the Layout menu.

The Grid Options dialog box appears:
7-39

Chapter 7: Working with Components
To enable or disable grid display:

◆ In the Grid Options dialog box, select or deselect Show Grid.

To enable or disable the snap-to-grid capability:

◆ In the Grid Options dialog box, select or deselect Snap to Grid.

This option automatically aligns components to the grid when you’re
moving, sizing, and creating them.

To set grid spacing:

◆ In the Grid Options dialog box, type the amount of space between
grid points, both horizontally and vertically.

Choosing a layout manager

You specify a layout for a container by setting the Layout property in the
Property List. You can arrange components in a layout by dragging and
dropping to a new location in the Form Designer, changing the component
order in the Project window, or changing properties for a component or
the container — depending on the layout manager you’re using.

You can also specify that no layout manager be used by a container by
selecting None as the value of the Layout property (see “Arranging
components without a layout manager” on page 7-41 for details). The
advantage of not using a layout manager is that you have precise control
over component placement. The disadvantage is that some components
display differently on different platforms. For example, any component that
displays text (except when text is a part of a saved graphic) can be
expected to appear differently on different platforms.

To choose a layout manager:

1 Open the Property List for a form or panel.

2 In the Property List, select a layout for the Layout property.

The Form Designer immediately reflects the layout by rearranging the
components based on the order in which they appear in the Project
window.

3 Rearrange the components in the Form Designer, if needed.
7-40

Arranging components
You can arrange components by:

◆ Arranging components without a layout manager

◆ Arranging components in BorderLayout

◆ Arranging components in CardLayout

◆ Arranging components in FlowLayout

◆ Arranging components in GridLayout

◆ Arranging components in GridBagLayout

◆ Manipulating the Form Designer grid

These options are discussed in the following sections.

Arranging components without a layout manager

If you wish, you can specify that no layout manager be used by a container
by using None as the value of the Layout property (None is the default
layout). That way, you can place components exactly where you want
them in a form, positioning them at precise pixel positions.

To arrange components in a layout manager of None:

◆ Use any of the following techniques:

❖ Drag components on the Form Designer to position them.

❖ Explicitly set x and y coordinates and the Bounds property in
the Property List.

❖ Arrange objects with the Align, Center, Space Evenly, Make Same
Size, Bring to Front, and Send to Back commands in the Layout
menu.

❖ Use the Form Designer grid, which you can set by choosing
Grid Options from the Layout menu. See “Manipulating the Form
Designer grid” on page 7-39 for more information.

❖ Move a component pixel by pixel by selecting the component
on the Form Designer and pressing the Right, Left, Up, and
Down Arrow keys, as needed.

You should test your layout by running your program on different
operating systems and screens of different sizes and resolutions, as
applicable.
7-41

Chapter 7: Working with Components
Tip: For maximum portability, it’s sometimes best not to overlap
components in your layout.

Arranging components in BorderLayout

Use BorderLayout to arrange components in a center, north, south, east,
and west orientation. It positions components based on their preferred
sizes and the constraints of the container size.

To arrange components in BorderLayout:

1 Choose BorderLayout for the Layout property of a form or panel.

2 If components are already on the form or panel, rearrange the
components as needed. Set the Placement property for each
component you want to position.

Note: In BorderLayout , no components should have the same
Placement value.

3 In the Property List, choose the form or panel component, then set
the Horizontal Gap and Vertical Gap properties to adjust
the layout.

4 For each component you want to add, add the new component
then set its Placement property to place it on the form or panel.

When you first add a component, its Position property is blank
(which is the same as Center).

5 Test your layout by running it at different form sizes and screen
resolutions. To help test your layout, you can resize the form when
you run it from Visual Cafe.

Arranging components in CardLayout

Use CardLayout to arrange components on several cards. You might
want to simulate a stack of index cards, for example. Only one card is
visible at a time, which allows you to flip through the cards.
7-42

Arranging components
Note: To set the flipping of cards at run time, you can either create an
interaction, or enter code directly in the source. To use an interaction,
create an interaction that as its action chooses a new card. For information
about writing the code, see “Programming the flipping of cards in
CardLayout” on page 7-43.

A component will be sized to take up an entire card; if you want multiple
components on a card, place components on panels. That way, the panel
will take up the entire card.

To arrange components in CardLayout:

1 Choose CardLayout for the Layout property of a form or panel.

If components are already on the form or panel, each component
directly subordinate to the form or panel becomes a separate card.
The cards are placed in the order in which they appear in the Project
window.

2 In the Property List, choose the form or panel component, then set
the Horizontal Gap and Vertical Gap properties to adjust
the layout.

3 If components are already on the form or panel, rearrange the
components in the Form Designer or Project window, as needed:

❖ To change the card order, change the component order in the
Project window.

❖ To flip between cards in the Form Designer, right-click, then
choose Previous Card or Next Card.

4 Add components as needed and rearrange them.

5 Test your layout by running it at different form sizes and screen
resolutions. To help test your layout, you can resize the form when
you run it from Visual Cafe.

Note: Changing the current card by selecting it in the Property List or by
changing the Selected Card property of the container only works if the
Card Name of each card is unique.

Programming the flipping of cards in CardLayout

You can enter code to implement the flipping of cards. Here are examples
of the code you need to write:
7-43

Chapter 7: Working with Components
To go to a certain card:

((CardLayout) container .getLayout()).show(container ,
“ cardname ”);

To go to the next card:

((CardLayout) container .getLayout()).next(container);

To go to the previous card:

((CardLayout) container .getLayout()).previous(container);

Where container is the name of the container that you’re using, and
cardname is the name of the card that you want to show.

Arranging components in FlowLayout

Use FlowLayout to arrange components in rows from left to right. You
can specify center, left, or right alignment, as well as the horizontal and
center gaps between components.

To arrange components in FlowLayout:

1 Choose FlowLayout for the Layout property of a form or panel.

The Form Designer immediately reflects the layout by rearranging the
components based on the order in which they appear in the Project
window.

2 In the Property List, choose the form or panel component, then set
the Alignment , Horizontal Gap , and Vertical Gap
properties to adjust the layout.

3 If components are already on the form or panel, rearrange the
components in the Form Designer or Project window, as needed.

4 Add components as needed and rearrange them.

5 Test your layout by running it at different form sizes and screen
resolutions. To help test your layout, you can resize the form when
you run it from Visual Cafe.

Arranging components in GridLayout

Use GridLayout to arrange components in definable rows and columns. This
layout is similar to FlowLayout , except that each component is in an area
7-44

Arranging components
of equal size. You can specify the number of rows and columns, as well as
the horizontal and center gaps between components.

To arrange components in GridLayout:

1 Choose GridLayout for the Layout property of a form or panel.

The Form Designer immediately reflects the layout by rearranging the
components based on the order in which they appear in the Project
window.

2 In the Property List, choose the form or panel component, then set
the Rows, Columns , Horizontal Gap , and Vertical Gap
properties to adjust the layout.

If you set either Rows or Columns to zero, GridLayout computes
the other value for you. If both Rows and Columns are non-zero, the
Rows value is used.

3 If components are already on the form or panel, rearrange the
components in the Form Designer or Project window, as needed.

4 Add components as needed and rearrange them.

5 Test your layout by running it at different form sizes and screen
resolutions. To help test your layout, you can resize the form when
you run it from Visual Cafe.

Arranging components in GridBagLayout

Use GridBagLayout to arrange components by size and position. Like
GridLayout , GridBagLayout treats the form or panel as a grid of cells.
Unlike GridLayout , however, a component can occupy more than one
cell in a grid bag layout.

The GridBagLayout is the most powerful way of managing an AWT
layout, but it can be very complicated. New to Visual Cafe is the GridBag
Constraints Editor, which you use to arrange components in a
GridBagLayout .

When you use a grid bag layout, you’re actually using two classes:
GridBagLayout , which provides the overall layout manager, and
GridBagConstraints , which defines the properties of each component
in the grid: its dimensions, placement, alignment, and so on. The grid bag,
the constraints, and each component come together to create the overall
layout.
7-45

Chapter 7: Working with Components
Grid Bag Contraints are a set of properties that determine how a visual
component will grow, shrink, or reposition itself, based on how its
container is resized. All grid-bag-constrained components have a separate
GridBagConstraints property value. This means that unforeseen size
and boundary conflicts between components can occur when the
container is set to certain sizes and dimensions. You must manually test
your component layout design to determine that all components within a
container behave appropriately. See the Components Reference in the
Online Help for more information.

Note: Visual Cafe 3.0 generates different code for
GridBagConstraints , as compared to previous versions. Code that
would take up around eight lines in earlier versions now takes up one.

To arrange components in GridBagLayout by using the GridBag
Constraints Editor:

1 Open the Property List for a form or panel.

2 Choose GridBagLayout for the Layout property of a form or panel.

The Form Designer immediately reflects the layout by rearranging the
components based on the order in which they appear in the Project
window.

3 In the Objects view of the Project window or in the Form
Designer, right-click on a component contained by the form or
panel, then choose Edit Constraints. Or, while the Form Designer is
active, choose Edit Constraints from the Layout menu.
7-46

Arranging components
The GridBag Constraints Editor for that component appears, as
shown here:

Only one GridBag Constraints Editor appears at a time.

4 Change GridBagConstraints properties as needed. You can
think of these properties as suggestions that GridBagLayout
uses.

The Form Designer display adjusts to each new setting you enter.

5 Use the GridBag Constraints Editor or the Property List to set the
GridBagConstraints properties to adjust each component’s
place in the layout. You can rearrange and add components as
needed.
7-47

Chapter 7: Working with Components
Tip: In the Property List, you can press F1 on a
GridBagConstraints property to get a description of it. Insets
specify how much space to leave between the borders of a
component and its display area.

6 Test your layout by running it at different form sizes and screen
resolutions. To help test your layout, you can resize the form when
you run it from Visual Cafe.

7 To close the GridBag Constraints Editor, click OK.

Creating AWT-based menus

You can add menu bars to frames and dialog boxes, which inherit from
MenuContainer ; AWT-based applets do not support menu bars.

Note: The Frame component in the AWT Application project template
already has a menu bar, which you can modify and enhance.

The Menu Designer makes it easy to create a menu bar by letting you edit
a visual representation of the menu bar. You can move items in the Menu
Designer to visually change the menu structure.

To open the Menu Designer:

◆ Double-click a MenuBar component in the Project window or Form
Designer.

or
7-48

Creating AWT-based menus
◆ In the Project window, select the MenuBar component, then choose
Edit MenuBar from the Object menu, or right-click and choose Edit
MenuBar.

Overview of the menu-design process

Here’s an overview of the steps you’ll follow when designing a menu.
These steps are described in detail in the following sections.

To design your menu bar and menus:

1 Add a menu bar to a frame or dialog.

(If you used the AWT Application project template, you already have
a menu bar in the frame that it created for you.)

For details on this step, see “Adding a menu bar to an AWT-based
frame or dialog box” on page 7-50.

2 Add menus to your menu bar.

For details on this step, see “Adding menus to an AWT-based menu
bar” on page 7-51.

3 Add menu items to your menus.

For details on this step, see “Adding menu items to AWT-based
menus” on page 7-51.

You can also add menu items that can have submenus.

For information on submenus, see “Adding submenus to menu items”
on page 7-52.

4 Edit the menu structure as needed.

For details on this step, see “Editing a menu structure” on page 7-53.

Click here to create a
new menu.

Click here to create a
new menu item.
7-49

Chapter 7: Working with Components
5 Associate command keys with menu items, as needed.

For details on this step, see “Associating command keys and menu
items” on page 7-54.

6 Add interactions between menu items and other components in
your project, as needed. For example, specifying that a menu item
should open a dialog within the same project.

To quickly open the Interaction Wizard, right-click and choose
Interaction Wizard from the pop-up menu.

For details on this step, see “Starting an interaction” on page 9-6.

7 Bind custom code to menu items, as needed.

For details on this step, see “Binding code to a menu item” on
page 7-55.

Tip: You can save time by copying menu bars and menus from other
projects. See “Copying components” on page 7-29 for more information.
You can also add commonly used menu bars and menus to the Component
Library and Palette. See “Customizing the Component Palette” on page 7-13
for more information.

Adding a menu bar to an AWT-based frame or dialog box

You add menus to dialogs and frames in the Form Designer, then edit them
in the Menu Designer. (Remember that AWT-based applets do not accept
menu bars.)

You can add the MenuBar component to a frame or dialog box in a variety
of ways.

To add a menu bar to a frame or dialog box:

◆ Do one of the following:

❖ Drag a MenuBar component from the Component Library or
Palette into the Project window or Form Designer.

❖ While the Project window or Form Designer is active, choose
Component from the Insert menu.

❖ Right-click the frame or dialog box in the Project window and
choose Insert Component.
7-50

Creating AWT-based menus
❖ Copy and paste a menu bar within the same project or between
projects. See “Copying components” on page 7-29 for details.

Adding menus to an AWT-based menu bar

You can add a Menu component to a MenuBar component.

Note: If you’re using Swing components you have more options for menu
items. For more information, see “Working with Swing menus” on
page 8-22.

To add a menu to a menu bar:

1 Do one of the following:

❖ Drag a Menu component from the Component Library or
Palette into its position in the Project window or Menu
Designer.

❖ While the menu bar is selected in the Menu Designer, right-
click and choose Insert menu.

❖ Right-click the menu bar in the Project window and choose
Insert Component.

❖ While the menu bar is selected in the Project window or Menu
Designer, choose Component from the Insert menu.

❖ Copy and paste the menu component within the same project
or between projects. See “Copying components” on page 7-29
for details.

2 In the Property List, set the menu properties, including the menu
name, in the Label property.

The HelpMenu property lets you integrate the menu item into an
existing Help menu that’s part of the operating system, for example.

Adding menu items to AWT-based menus

You can add a MenuItem or CheckboxMenuItem component to a Menu
component.
7-51

Chapter 7: Working with Components
Note: If you’re using Swing components, you have more options for menu
items. See “Working with Swing menus” on page 8-22.

To add a menu item to a menu:

1 Do one of the following:

❖ Drag a component from the Component Library or Palette into
its position in the Project window or Menu Designer.

❖ While a menu item is selected in the Menu Designer, right-click
and choose Insert Menu Item or Insert Checkbox Menu Item.

❖ Right-click the menu in the Project window and choose Insert
Component.

❖ While a menu is selected in the Project window or Menu
Designer, choose Component from the Insert menu.

❖ Copy and paste it within the same project or between projects.
See “Copying components” on page 7-29 for details.

2 In the Property List, set the menu item properties, including the
menu item name in the Label property.

Tip: To add more menu items while in the Menu Designer, you
can now select the bottom menu item in the list and press ENTER.

Adding submenus to menu items

You can add a MenuItem or CheckboxMenuItem component to a Menu
component that is within another Menu component.

To add a submenu to a menu item:

1 In the Menu Designer, right-click a menu item and choose Insert
Menu.

A menu that can have submenus appears.

2 While the new menu is selected, set the menu properties in the
Property List, including the name of the menu in the Label field.

3 Click the submenu box, then add a menu item. For more
information, see “Adding menu items to AWT-based menus” on
page 7-51.
7-52

Creating AWT-based menus
Tip: To add more submenu items, you can now select the bottom
submenu item in the list and press ENTER.

Editing a menu structure

You can change a menu’s structure as needed.

To move items in the menu structure:

◆ Move items in the Menu Designer or Project window to visually
change the order of the items in the menu.

To delete a menu or menu item:

◆ Select the component in the Menu Designer or Project window,
then press DELETE or choose Delete from the Edit menu.

Note: If you delete a component from a container, you must
manually delete any custom code, interactions, or event bindings
that involve that component.

Click and drag a menu item in the
Project window (Objects view) to
change the order of the items in a
menu.
7-53

Chapter 7: Working with Components
Editing menu bars and menus

You can edit menus by using the Menu Designer and Property List. Each
menu is a subcomponent of the menu bar.

To edit a menu or menu bar:

1 Add a menu bar to the form, or if the menu bar already exists, do
either of the following:

❖ In the Form Designer, double-click on the menu object.

❖ In the Project window, double-click on the menu bar icon.

Note the menu placeholder in the menu bar window.

2 Open the Property List by choosing Property List from the View
menu.

3 Do either of the following:

❖ Select the Label property and enter the menu caption.

❖ Highlight the menu placeholder and start typing. The text is
added to the Label property.

4 To add more menu items, do either of the following:

❖ Press ENTER to move down to the next menu item.

❖ Choose Insert Menu Item from the pop-up menu to insert a menu
item before the selected menu item.

5 Right-click on the menu item and choose Create Submenu from the
pop-up menu.

6 Bind code to the appropriate menu items.

7 Define any interactions by right-clicking the menu item and
choosing Add Interaction from the pop-up menu. For more
information, see Chapter 9, “Working with Events and
Interactions.”

Associating command keys and menu items

You can quickly add command keys to menu items. A command key
allows the user to access a program feature by pressing a combination of
keys instead of clicking onscreen items with a mouse. For example, the
user might press CTRL-P instead of choosing Print from a menu.
7-54

Creating AWT-based menus
To associate a command key with a menu item:

1 Select a menu item in the Project window or Menu Designer.

2 In the Property List, expand the Menu Shortcut property and
specify the command key(s) in the Key Code and Use Shift Key
fields.

The Key Code field lets you specify what keys you want to use; for
example, VK_P selects CTRL-P. In the Menu Designer and Project
window, this key sequence displays as “CTRL-Kanji .”

If you want the SHIFT key to be part of the command key sequence,
choose true; otherwise, choose false.

3 Verify your command keys by running your Java program:

❖ Choose Execute from the Project menu to run the project with
no debugging.

❖ Choose Run in Debugger from the Project menu to run the project
and have access to all debugging functionality.

Note: You can compile and run a project at any time during its
development cycle. Visual Cafe automatically saves the files in the
project before running.

Binding code to a menu item

You can bind code to a menu item just as you can bind it to a component.
Menu items respond to one event: ActionEvent , which occurs when the
user selects a menu item.

To bind code to a menu item:

1 Open the menu bar in the Menu Designer or Project window.

2 Select the menu item.

3 Right-click and choose Edit Source from the pop-up menu.

4 In the Source window, select the Action event from the Event/
Method drop-down list.

5 Add the appropriate Java code to the event handler.
7-55

C H A P T E R 8
Working with JFC/Swing
Components

Visual Cafe includes a group of components called the Swing components.
Swing components, which are part of the Java Foundation Classes (JFC)
have the following advantages over the older AWT components:

◆ They are “lightweight” components that require fewer system
resources.

◆ You can control the look and feel (appearance and behavior) of Swing
components.

◆ A number of the components allow you to place an image icon on
them.

◆ The Swing set of components includes types of components that are
not included in AWT, such as a scrolling pane, a table, and a tree.

This chapter discusses how to use the Swing components.

About Swing

Swing is the name given to the new set of Java visual components, which
you can use to create user interface elements such as buttons, tables, lists,
text fields, windows, and so on.

The Swing components plus some accessibility features make up the Java
Foundation Classes (JFC). Since JFC currently contains little aside from
Swing, JFC is often used as a synonym for Swing. JFC will contain other
items in the future.
8-1

Chapter 8: Working with JFC/Swing Components
Earlier versions of Java introduced the AWT (Abstract Windowing Toolkit)
components. The AWT components use native-code components to draw
on local systems. These native-code components are called peer
components. AWT uses peer components so that components in a Java
program look the same as components in a native application. The idea
was that you could write one program that would look the same when run
on different operating systems; when you ran it on a Windows machine it
would look like a Windows application, when you ran it on a Macintosh it
would look like a MacOS application, and when you ran it on a UNIX
platform it would look like a Motif/CDE application. Although there were
advantages to that approach, it presented some problems:

◆ Since the peer components were not written in Java, different
platforms had different bugs in their components.

◆ You had limited control over the final appearance of your application.
It can be difficult to design an application that looks right and works
correctly with components that have appearance and behavior (look
and feel) that you can’t control.

Swing is designed to fix these problems. Swing components are 100% pure
Java, and have minimal dependence on native C code. That means you can
easily subclass Swing components to create your own components. In
addition, the fact that Swing components are entirely written in Java means
that the Java code determines what they look like, so that you can control
their final appearance.

To extend that control, Swing components have what is called “pluggable
look and feel.” You can determine the appearance (look) and behavior
(feel) of the components in your program at design time or at run time. If
you want your application to behave like a Macintosh application on a
Macintosh computer and a Windows application on a Windows computer,
you can make that happen. On the other hand, if you want your
application to behave in the same way on every platform, you can do that,
too. Swing comes with several built-in look-and-feels, and you can create
your own so that components have a unique style that you determine.

The need for native-code peer components leads to AWT components
being called heavyweight components. Swing components, on the other
hand, are called lightweight components because they don’t need their own
peer components. Swing top-level containers (applets, windows, frames,
and dialog boxes) are heavyweight, however, so that they can draw
components they contain on the local display; lightweight components that
you place inside top-level containers use the drawing facilities of the top-
level containers.
8-2

About Swing
There is a large set of Swing components that includes one component for
each AWT component plus many variations. A Swing component type
starts with a J to distinguish it from an AWT component; thus, while
Button is an AWT component, JButton is a Swing component.

Swing components conform to the JavaBeans component specification.

Inside Swing components

In order to facilitate pluggable look and feel and otherwise provide
increased flexibility, the Swing components use a model-view-controller
paradigm. That means that the data storage (model) and the look and feel
(view), are embodied in separate objects that are managed by a third
object called a controller. Thus, when you create a component such as a
JButton object, that (controller) component actually creates two other
components, a ButtonUI object and a ButtonModel object. Note that
the Swing components create the auxiliary objects for you—you never
have to create them yourself. You may, however, sometimes want to create
the model explicitly, so that you can change the way the component
handles data. That approach probably wouldn’t make sense in the case of
a button, but often makes sense in the case of more complex components
such as tables.

The UI object handles UI functions such as appearance, installing,
deinstalling, painting, updating, sizing, and posting events. It extends from
the ComponentUI abstract class of the Swing package, so the UI object
always has some basic methods you can use. The UI object decides on the
look and feel by asking the UIManager object that resides in the Java run-
time environment what the look and feel should be and acting on the
response. (Note that the look and feel is thus determined for the entire UI
at once, and cannot be changed only for an individual component.)

The model object stores the data and state of the component. For example,
a ButtonModel object stores the state of a button. For more complex
objects, such as JTable , you may need to manipulate the model object to
describe the data. See “Specifying a model for a Swing component” on
page 8-18 for more information.
8-3

Chapter 8: Working with JFC/Swing Components
The structure of a Swing UI

You can divide the Swing components into three groups: top-level
containers, other containers, and all other components. The top-level
containers are:

◆ JFrame

◆ JApplet

◆ JWindow

◆ JDialog

These containers provide the context in which lightweight components can
draw; thus, all the other Swing components must go inside one of these
containers.

When you create a new Swing project in Visual Cafe, you choose one of
the following project templates:

◆ JFC Application for an application. This creates a JFrame object.

◆ JFC Applet for an applet. This creates a JApplet object.

(If you have the Database Edition of Visual Cafe, you can also choose the
DataBound Project Wizard, which lets you create an applet or application that
is prepared to handle a database.)

You can then choose components from any of the Swing tabs of the
Component Palette or Swing sections of the Component Library and drop
them into the JFrame or JApplet object. (Swing menu components are
in the Menu & Menu Items section of the Component Library.) You can also
add non-Swing components, but you need to take care when doing so. See
“Using non-Swing components in a Swing project” on page 8-26 for
information.

If you add components programmatically, you should be aware that you
do not add components directly to a top-level container. Each Swing top-
level container has a content pane, and you add your components to that
content pane. For example, when you add a text field to the main
container in the Form Designer, the code generator adds a line like this to
the main container’s code:

getContentPane().add(jTextField1);
8-4

About Swing
To use JWindow or JDialog as a top-level container:

1 Choose Form from the Insert menu.

2 Choose JWindow or JDialog from the list of choices in the
dialog box that appears.

Depending on which you chose, JWindow or JDialog is
established as the top-level container.

About JComponent features

All Swing components are subclasses of the Swing JComponent class,
which is a subclass of java.awt.Container .

Here are some standard features of JComponents :

◆ Borders – A border is a visual container for a component, such as a
raised bevel line surrounding a button. See “Specifying a border for a
Swing component” on page 8-12 for information.

◆ Icons – You can display a graphic on many Swing components; for
example, you can have a static or animated image on a button. See
“Specifying an icon for a Swing component” on page 8-15 for
information.

◆ Tool tips – You can supply a tool tip string in the ToolTipText
property in the Property List. The appearance of the tool tip depends
on the look and feel. See “Specifying tool tips for Swing components”
on page 8-12 for information.

◆ Keystroke handling – You can associate a keystroke mnemonic with a
component such as a button or menu item so that when the specified
key is pressed along with a command key (such as ALT in Windows),
an action occurs. (In the case of menu items, if the menu is already
open, the user doesn’t need to press the command key.) In addition,
you can associate command-key sequences with a component so that
when the keys are pressed an action occurs. The keystrokes are
defined by KeyStroke objects, which are registered with the
registerKeyboardAction method. Some components have
defined key assignments to be used with a standard look-and-feel. For
example, for the metal look-and-feel, JButton has the following key
assignments: press TAB to navigate forward, press SHIFT-TAB to
navigate backward, and press ENTER, the space bar, or ALT-character
(if defined) to activate the button.
8-5

Chapter 8: Working with JFC/Swing Components
◆ Auto-scrolling – You can enable auto-scrolling with the Autoscrolls
property in the Property List. For example, if you have a text field
within a scrollable pane, you could drag your cursor over text and
scroll (similar to a word processor window). You can also use the
scrollRectToVisible method (if the parent component is a
scrolling component); the VisibleRect property in the Property List
is read-only.

◆ Actions – You can use Action objects to implement program
functions so that one piece of code can handle user requests coming
from menu items or toolbar buttons. Visual Cafe includes two special
components intended for use with Action objects: JActionMenuItem
and JActionButton .

◆ Double buffering – You can use an off-screen buffer to draw an image
more smoothly (with less flicker); components first draw to a buffer
that is not visible to the user, then draw this buffer on the screen. If a
parent component has a buffer, the child components share that buffer.
In the Property List, you can set the DoubleBuffered property for a
component that extends from JComponent . The standard Swing
forms, such as JFrame , have a buffer that child components will share
when DoubleBuffered is enabled.

◆ Slow-motion rendering – You can use this feature to debug a
component and optimize how it redraws itself. You can set this in the
Property List by setting the value of the DebugGraphicsOptions
property or you can use the setDebugGraphicsOptions method
to set it programmatically. The debug graphics options allow you to
initiate slow-motion rendering and to print messages to the console,
make the graphics flash, and display a window that shows operations
performed in the off-screen buffer.

◆ Sizes – The minimum, maximum, and preferred size values for a
component are used when the component is resized. Usually, the UI
object determines these sizes based on the component state, such as
whether the component has a label or border. You can
programmatically change these values.

◆ Accessibility support – The Accessible interface lets you provide UI
enhancements for assistive technologies, such as magnified viewers for
people with impaired vision.
8-6

About Swing
Mixing Swing and AWT components

Because all Swing components, including Swing containers, are based on
the AWT Container class, you can mix AWT and Swing components in
your programs. However, it is best to avoid doing so. The biggest problem
has to do with z-order (also called display order). See “Determining
component z-order (display order)” on page 8-21 for more information.
Heavyweight components such as AWT components always display over
lightweight components, so the AWT components may hide the Swing
components unless you’re careful. See “Using non-Swing components in a
Swing project” on page 8-26 for more information.

About Swing windows and applets

Swing has JFrame , JDialog , JApplet , and JWindow classes, which are
similar to the corresponding AWT classes. One difference is that windows
and applets in Swing have a Root pane, which is an instance of the
RootPane class and has these characteristics:

◆ Supports menu bars (JFrame and JApplet only)

◆ Provides a Content pane to hold other components; for example, you
could use getContentPane.add(myjbutton) to add a button

◆ Provides layers for internal frames, which are windows inside other
windows; for example, Visual Cafe MDI mode has windows inside of
the main window (this feature is not currently supported by the Visual
Cafe Form Designer)

Windows have a DefaultCloseOperation property, which can cause
the window to hide, be disposed of, or do nothing for a close event. There
are also several WindowListener methods that notify components of
WindowEvents , such as the window being activated or closed.

Customizing Swing components

Swing gives you more control over components than does AWT. If you
wish, you can modify various aspects of Swing components; these
modifications are not available for non-Swing components. With Swing
components, you have control over the following features:
8-7

Chapter 8: Working with JFC/Swing Components
◆ You can control the look and feel of the components in your
application.

◆ You can specify tool tips.

◆ You can select a border.

◆ Many of the Swing components can display an icon.

◆ You can specify the data model for most components. The data model
stores the component’s data. Thus, if you want, you can control how
and where data is stored.

◆ You can determine the components’ z-order (display order).

These features are discussed in the following sections.

Note: You don’t have to control any of these features; they all have default
values.

Creating a Swing-based project

You can create Swing-based applications and applets in Visual Cafe. In
general, you should use Swing components only in Swing-based projects.
The following sections apply just to Swing components; for more
information on using components, see Chapter 7, “Working with
Components.”

Overview of creating a Swing-based project

This section describes the basic steps involved in setting up a Swing-based
project.

To create a Swing-based project:

1 Choose New Project from the File menu.

2 Choose the type of program you want to create:

❖ If you want to create an application, choose the JFC Application
project template.
8-8

Creating a Swing-based project
❖ If you want to create an applet, choose the JFC Applet project
template.

❖ If you have the Database Edition of Visual Cafe and you want
to create a databound applet or application, choose the
DataBound Project Wizard.

3 Insert components from the Swing Containers and Swing tabs in the
Component Palette.

Choosing a look and feel

With AWT components, the look and feel (appearance and behavior) of the
components is generally determined by the local system. With Swing
components, you control the look and feel.

Here’s a selection of components with the Windows look and feel:

Here’s the same set with the Motif look and feel:

Not all look-and-feels are available on all systems. In particular, the
Windows look and feel may not be available on non-Windows systems and
the MacOS look and feel may not be available on non-MacOS systems.
Here is the current list of look-and-feels:

◆ The Macintosh look and feel uses MacOS-style components.

◆ The Windows look and feel uses Windows-style components.
8-9

Chapter 8: Working with JFC/Swing Components
◆ The Motif look and feel uses Motif/CDE-style components.

◆ The Metal look and feel, also called the Java look and feel, is the cross-
platform Java style. (You may occasionally see references to the
Organic look and feel; Organic is an older Java style that has been
replaced by Metal, and is no longer supported by Sun.)

Note: The Macintosh look and feel isn’t included with Visual Cafe. For
more information, point your Web browser to
http://developer.javasoft.com .

Changing the look and feel of Swing components

You can change the way components look in the Form Designer by using a
Visual Cafe menu command. In order to see the changes in a running
program, you need to change the look and feel programmatically.

To change the look and feel in the Form Designer:

1 Select the Form Designer.

2 Choose Look and Feel from the Layout menu.

The submenu lists the available look-and-feels.

3 Select a look and feel from the submenu.

All Swing components in the project now reflect the new look and
feel.

To change the look and feel programmatically:

1 Make sure that the UIManager and the SwingUtilities
classes are imported so that they are available to your program.
You can do that in two different ways. One is with two statements
like this:

import com.sun.java.swing.UIManager;

import com.sun.java.swing.SwingUtilities;

The second way is to import all Swing classes with one statement like
this, as is automatically done for you when you create a Swing applet
project in Visual Cafe:

import com.sun.java.swing.*;

2 Insert code like this where you want to change the look and feel:

try {

UIManager.setLookAndFeel
8-10

Creating a Swing-based project
("com.sun.java.swing.plaf.motif.MotifLookAndFeel");

SwingUtilities.updateComponentTreeUI(this);

}

catch (Exception e)

{

System.err.println("Couldn't load look and feel");

}

The updateComponentTreeUI call is needed so that the change
propagates to all components.

All Swing components in your program reflect the new look and feel.

Of course, the issues involved in setting the look and feel
programmatically can’t be summed up in such a simple way. For one
thing, you can’t be sure which look-and-feels are installed on the
user’s system. For another, you might want the user to control the
look and feel, in which case you would need to present a menu with
the available choices. The following section provides more
information on setting a look and feel.

Finding out which look-and-feels are installed

You may want your program to find out what look-and-feels are installed
on the system where the program is running. The UIManager has a list of
installed look-and-feels. These are stored as an array of
LookAndFeelInfo objects. You need to import the UIManager class,
which is in the UIManager package, into your program. One way you can
do that is by changing the UIManager import to:

import com.sun.java.swing.UIManager.*;

You can get the array with a call like this:

LookAndFeelInfo[] lookandfeels =

UIManager.getInstalledLookAndFeels();

Once you have the array, you can use it to set the look and feel like this:

UIManager.setLookAndFeel(lookandfeels[0].getClassName());

That call sets the look and feel to be the first look and feel in the list.

Don’t forget that you have to update the component tree with a call like
this:

SwingUtilities.updateComponentTreeUI(this);
8-11

Chapter 8: Working with JFC/Swing Components
Specifying tool tips for Swing components

Every Swing component has a built-in facility for a tool tip, which is
informational text that appears when the mouse pointer pauses over the
component (sometimes called flyover text).

Here is an example of a tool tip:

The easiest way to specify the tool tip text is to use the Property List. Put
the text that you want in the ToolTipText property.

Specifying a border for a Swing component

Every Swing component can have a border. A border is a visual container
for a component, for example, a raised bevel line surrounding a button.
Here are examples of the available borders for a text field:

In Visual Cafe, a border object is a non-visual component that appears in
the Objects view of the Project window at the same level as the component
8-12

Creating a Swing-based project
that created it. For example, here is the Objects view for the project used to
create the previous figure:

You can share border objects within the same project across multiple
components.

Note: You can manually delete unused border objects from your project.
Visual Cafe does not remove them for you.

To specify a border for a Swing component:

1 Choose Property List from the View menu to display the Property
List.

2 Select a component in the Form Designer, Project window, or from
the drop-down list at the top of the Property List.

3 Find the Border property, then select an item from the drop-
down list.
8-13

Chapter 8: Working with JFC/Swing Components
The Property List shows items in the Border property’s drop-down
list that are appropriate for that component. Initially, the Border
property’s drop-down menu contains types of borders. When you
choose a border type, a new border object is added to your project
and the Border drop-down list will also show the name of this new
object. Every time you choose a border type for the Border property
in the Property List, a new border object is created and added to the
drop-down list.

4 Press ENTER or click somewhere else to make the change.

Note: Press ESC to cancel an edit and return the property to its
previous value.

Choosing a layout manager for a container

Layout managers in Swing containers work the same way they do in AWT
containers, except that Swing provides a few extra choices. (See “Arranging
components” on page 7-37 for more information on layout managers.) The
new layout managers are:

◆ BoxLayout – This layout manager is similar to the FlowLayout
manager, but it can lay out components from left to right or from top
to bottom, while FlowLayout can lay them out only from left to right.

◆ OverlayLayout – This is a small-footprint layout manager that
centers an object in its area. It is used by JButton and its subclasses.
Unlike BorderLayout ’s centering, OverlayLayout does not
expand the component to fill the available space, but instead leaves it
at its preferred size. Because this layout manager is for button objects,
it doesn’t appear in the layout manager list for other components.

◆ ViewPortLayout – This is a layout manager for the JViewport
component. Because this layout manager is for view port objects, it
doesn’t appear in the layout manager list for other components.

◆ ScrollPaneLayout – This is a layout manager for the
JScrollPane component. Because this layout manager is for scroll
pane objects, it doesn’t appear in the layout manager list for other
components.

You can set a container’s layout manager by opening the Property List for
the container and changing the value of the Layout property.
8-14

Creating a Swing-based project
Specifying an icon for a Swing component

The Swing components JButton , JToggleButton , JCheckbox ,
JRadioButton , JActionButton , JLabel , and JOptionPane can
display images on their surfaces. Here are some examples:

These images are referred to as icons, because they are usually small, but
you can use any GIF or JPEG file, including animated images.

In Visual Cafe, an icon object is a non-visual component that appears in the
Objects view of the Project window at the same level as the component
that created it. Any number of components in a project can use a single
icon object. Here is the Objects view of the project used to create the
previous figure:
8-15

Chapter 8: Working with JFC/Swing Components
You can set seven icons for your project’s buttons. (JLabel and
JOptionPane have some, but not all, of these icons.) All of these
properties are available in the Property List in the Icon category.

To set an icon for a Swing component:

1 Choose Property List from the View menu to display the Property
List.

2 In the Property List, click the right column next to the name of the
icon that you want to set.

A drop-down list appears:

3 From the drop-down list, select new ImageIcon.

Name Use

Icon This is the default icon for the component. It
displays when none of the other icons show
or when another icon would show but hasn’t
been set.

RolloverIcon This icon displays when the mouse pointer
rolls over the component.

DisabledSelectedIcon This icon displays when the component is
selected but disabled.

RolloverSelectedIcon This icon displays when the component is
selected and the mouse cursor rolls over it.

DisabledIcon This icon displays when the component is
disabled.

SelectedIcon This icon displays when the component is
selected

PressedIcon This icon displays when a mouse button is
pressed on the component.
8-16

Creating a Swing-based project
Visual Cafe creates an ImageIcon object and adds it to the list of
objects in the project:

Visual Cafe names the first ImageIcon object imageIcon1 . The
next time you pull down any icon menu in the Property List for any
object in this project, you see imageIcon1 listed as well as
ImageIcon . If you choose imageIcon1 , then the new icon uses
that object. If you choose ImageIcon , Visual Cafe creates a new
ImageIcon object. (Thus, you can have several different icons share
the same image or you can have each icon have its own image.)

4 Select the ImageIcon object from the list of objects so that its
properties appear in the Property List.

The ImageIcon is a non-visual component, so you need to select it
from the Objects view of the Projects window or the list of objects in
the drop-down list at the top of the Property List.

5 In the Property List, click in the field for ImageLocation.

A button with an ellipsis (...) appears in the field:

6 In the Property List, click on the ellipsis (...) button.
8-17

Chapter 8: Working with JFC/Swing Components
A dialog box that lets you specify an image appears:

You can specify a URL or choose a file.

7 To choose a file, click on the button with the ellipsis (...) that
appears in the dialog box.

Note: You can manually delete unused icon objects from your project.
Visual Cafe does not remove them for you.

Specifying a model for a Swing component

Swing components separate the view of a component’s data from the data
itself by storing the data in a model object. For example, a ButtonModel
object stores the state of a button. For more complex objects, such as
JTable , the data model stores a larger amount of information. In fact,
JTable uses several models; in addition to the data model, it has a
column model that handles the appearance of each column and a selection
model that holds selection information.

You can use this separation of model and view in two ways:

◆ You can have more than one view of a single set of data.

◆ You can change the way a component stores data without changing
the way the component displays the data.

Here’s a simple demonstration of sharing data between two components.

To create a table and set its model:

1 Create a new JFC Applet project.

2 Place a JTable object in the applet.

3 In the Objects view of the Project window, select JTable1.
8-18

Creating a Swing-based project
4 In the Property List, scroll down to the Model property.

5 Click the right column next to the Model property, where it says
(Default).

A list of model types appears.

6 Choose New StringTableModel.

Visual Cafe creates a StringTableModel object called
stringTableModel1 and adds it to the project.

To place items in the table:

1 In the Objects view of the Project window, select
stringTableModel1 .

2 In the Property List, click the right column next to the Items
property, where it says [list].

An empty drop-down list appears.

3 Type 1, 2, 3 .

That action specifies a row with three columns.

4 Press CTRL-ENTER.

The insertion point moves to the next line.

5 Type 4, 5, 6 .

6 Press ENTER.

The table in the Form Designer now shows the two rows with three
columns. (You may need to make the table bigger to see all of the
columns.)

To associate a second table with the same model:

1 Place another JTable object in the Form Designer.

2 In the Property List, scroll down to the Model property.

3 Click the right column next to the Model property.

A drop-down list appears. It looks like the drop-down list for jTable1,
but now there is an additional item: stringTableModel1.

4 Choose stringTableModel1.

Notice that the list of items you entered in the model now appears in
both tables.
8-19

Chapter 8: Working with JFC/Swing Components
Note: You can manually delete unused model objects from your project.
Visual Cafe does not remove them for you.

You can execute the project, and when you edit either of the tables, both
tables show the changed data.

The tables in the executing project look like this:

Here is another simple example.

To make aJComboBox and a JList share a model:

1 Create a new project, which can be a JFC applet or application.

2 Add a JComboBox component and a JList component.

With JComboBox and a JList components, you need to define a
model in order to add items in Visual Cafe. Both components have
default models so that you can add items within a program by calling
model methods. However, you can’t see the default models in Visual
Cafe, so you can’t add items using the Property List unless you
explicitly set the model. This is also true with JTable .

3 In the Property List, choose the Model property of the JComboBox
component.

4 Choose New StringComboBoxModel.

Visual Cafe creates a model called stringComboBoxModel1 and
adds it to the project.

5 Choose the Model property of the JList component.

The drop-down list now includes stringComboBoxModel1.

6 Choose stringComboBoxModel1 from the drop-down list.

7 In the Objects view of the Project window, choose
stringComboBoxModel1.

8 In the Property List, click the right column next to the Items
property, where it says [list].
8-20

Creating a Swing-based project
An empty drop-down list appears.

9 Type one .

10 Press CTRL-ENTER.

The insertion point moves to the next line.

11 Type two .

12 Press CTRL-ENTER.

13 Type three .

14 Press ENTER.

15 Choose Execute from the Project menu to run the program.

You see the same items in the combo box and the list.

Determining component z-order (display order)

You can determine the z-order (also called the display order) of Swing
components, which is useful when you place components on top of other
components. The z-order is the order in which components are displayed,
and affects components’ visibility when they’re opaque. (You can make
Swing components opaque by setting the Opaque property.) The z-order
also determines which component receives mouse events.

You determine the z-order in Visual Cafe by using the Objects view of the
Project window. Objects at the top of the list are written to the screen after
(that is, on top of) objects on the bottom of the list. When an event occurs
in a part of the display that contains more than one component, the
component that’s highest on the list gets the event.

Controlling the display of expert and read-only properties

The programmer who coded the components that you use may have
decided that some properties are expert properties, which means they are
only displayed in the Property List when you tell Visual Cafe that you want
to see expert properties. (The term “expert properties” only means that the
programmer defined those properties as “expert.”) You can also tell Visual
Cafe whether or not you want to see read-only properties.

To control the display of read-only and expert properties:

1 Choose Environment Options from the Tools menu.
8-21

Chapter 8: Working with JFC/Swing Components
2 In the Environment Options dialog box, click the Property List tab.

3 Select or deselect Show Expert Properties and Show Read-Only
Properties as needed.

4 Click Apply to make the change, or OK to make the change and
close the Environment Options dialog box.

Working with Swing menus

Swing includes the JMenuBar , JMenu, JMenuItem , and JMenuItem
components for building menu bars. Visual Cafe adds the
JActionMenuItem component, the Swing Menu Designer, and the
Accelerator Editor.

About the Swing Menu Designer

You can create menus by dropping these components in the Form
Designer or the Objects view of the Project window, but Visual Cafe
includes a Swing Menu Designer that makes it easy to create menus. Visual
Cafe also adds the JActionMenuItem component for creating a menu
item implemented by an Action component. (See the following section,
“Using Action components in menus and toolbars.”)

To display the Swing Menu Designer:

1 The first step depends on whether your project is an applet or an
application.

❖ If you used the JFC Applet template, drop a JMenuBar object
into the Form Designer or the Objects view of the Projects
window.

❖ If you used the JFC Application template, you already have a
menu bar object, so you don’t need to add one.

2 Select the menu bar object.

You can select it in the Form Designer, in the Objects view of the
Projects window, or by using the drop-down list at the top of the
Property List.

3 Choose Edit JMenuBar from the Objects menu.
8-22

Creating a Swing-based project
The Swing Menu Designer appears:

You can use the Swing Menu Designer to add menus and menu items
by typing menu item names where the Menu Designer says Type Here:

You can also right-click and choose objects and commands from the
menu that appears.
8-23

Chapter 8: Working with JFC/Swing Components
About the Accelerator Editor

The JMenuItem and JActionMenuItem components include an
Accelerator property. You can define a key combination (SHIFT-L, for
example) for a menu item by setting the value of this component. If you
click the ellipsis (...) button that appears when you click this property, the
Accelerator Editor opens:

You can specify a character and a modifier key for the accelerator.

About mnemonics

Mnemonics are different than keyboard accelerators. You can define a
mnemonic for a menu item by setting the value of the Mnemonic property
to any character that appears in the menu item’s text. Visual Cafe
automatically underlines that character in the text, so the user can see what
the mnemonic for that menu item is (Close, for example). When the menu
is pulled down and the user presses that key, the menu item executes.

You can also define a mnemonic for a menu. You set it in the same way —
by defining the value of the Mnemonic property for the menu. When the
user presses the ALT key and the underlined character the menu opens,
allowing the user to use the mnemonics for the menu items. (Buttons can
also have mnemonics, which work in the same way as menu mnemonics:
the user presses ALT along with the mnemonic character.) Here is a set of
menus and menu items, all of which have mnemonics:
8-24

Creating a Swing-based project
Using Action components in menus and toolbars

Many applications offer the same commands in toolbars and in menus. For
example, an application might have a Cut command that appears both in
the Edit menu and on a toolbar. Swing includes the abstract Action class,
which can be used to centralize code for user actions.

To use action objects:

1 Insert JActionMenuItem objects instead of JMenuItem objects
in your menus.

2 Use JActionButton objects instead of JButton objects. You
usually use these in toolbars, but you don’t have to.

3 Insert an Action component for each action that you want to
implement.

When you insert an Action component, Visual Cafe adds an
Action class to your project. It appears in your project as a top-level
object, and Visual Cafe creates a Java source file for it.

You usually have one Action class for each pair of
JActionMenuItem /JActionButton objects.

4 Edit the source code of the Action class to implement the action.

When the user chooses any JActionButton or
JActionMenuItem associated with the Action object, Java calls
the method Action.actionPerformed , so that is the method that
you need to implement.

5 In the Objects view of the Project window, drag the icon of the
Action class into the part of your applet or application that has
your JActionButton and JActionMenuItem objects. (For
example, drag the icon into the JApplet or JFrame class.)

Visual Cafe creates an object from your Action class.

6 Using the Property List, you can now set the Action property of
the JActionButton and JActionMenuItem objects to the new
Action object that you’ve created.

When the user chooses the menu item or presses the button, the
code that you implemented in your Action class executes.
8-25

Chapter 8: Working with JFC/Swing Components
Using non-Swing components in a Swing project

You can freely use lightweight components in Swing projects. The
following Visual Cafe components are lightweight:

◆ All Swing components except for the top-level containers

◆ All shape components

◆ ImageViewer

◆ InvisibleButton

◆ InvisibleHTMLLink

◆ Label3D

◆ RollOverButton

◆ SlideShow

Other components, including all AWT components, are heavyweight. You
can use heavyweight components in Swing projects, but mixing lightweight
and heavyweight components causes the following problems:

◆ Heavyweight components always draw over lightweight components,
so they hide any lightweight components that are in the same location.
This is the primary problem, and the following section discusses this
issue.

◆ Heavyweight components do not use the look-and-feel mechanism
that Swing uses, so you can’t control their appearance in the way you
can with lightweight components. This restriction also applies to the
non-Swing Visual Cafe components listed above.

Mixing lightweight and heavyweight components

As mentioned earlier, the primary problem you may encounter in mixing
lightweight and heavyweight components has to do with the fact that
heavyweight components always display over lightweight components that
are in the same container. This is because lightweight components use the
drawing context of their nearest heavyweight container, while heavyweight
components create their own drawing context.

You cannot, therefore, place lightweight components and heavyweight
components in the same container if you want the lightweight components
to overlap the heavyweight components.
8-26

Creating a Swing-based project
There are three less-obvious places where this problem can occur:

◆ The Swing container JScrollPane is a lightweight component, so
heavyweight components are not clipped correctly when they are
inside this container. (Specifically, a heavyweight component can
obscure the scroll bar.) If you want to put heavyweight components in
a scroll pane, use the AWT ScrollPane component instead of
JScrollPane .

◆ JInternalFrame is also a lightweight component. The problem
here is that heavyweight components in different JInternalFrame
objects within the same container will always appear on top of the
lightweight JInternalFrame object. There is no AWT equivalent for
this container, so you need to avoid putting heavyweight components
in JInternalFrame objects.

◆ The Swing pop-up components JPopupMenu , JComboBox, and
JMenuBar can display as lightweight or heavyweight components.
Java always makes these heavyweight components under certain
conditions (for example, when a pop-up menu extends beyond the
edge of a window), but in other cases they will be lightweight if the
lightWeightPopupEnabled property is true . If you have
heavyweight components in the window where the pop-up may
appear, you should set lightWeightPopupEnabled to false .
8-27

C H A P T E R 9
Working with Events and
Interactions

This chapter discusses events and interactions and shows you how to work
with them in the Visual Cafe environment. You’ll learn how to create, edit,
and delete interactions using the Interaction Wizard and the Form
Designer.

About events and interactions

One of the most powerful features of Visual Cafe is its ability to quickly
build a cause-and-effect relationship between two components. This
relationship is called an interaction. For example, clicking a button can
add a line of text to a text field or perform a mathematical calculation.

Any time a button is clicked, a menu item is selected, a box is checked,
and so on, a program action called an event is generated. An event is a
signal that a source-program element sends to a target-program element to
notify the target that a particular behavior has occurred. To link those
events to a corresponding action in your program, you need an event
handler that responds to that event. An event handler is a method that’s
called when an event is triggered.

Visual Cafe lets you create these high-level interactions between
components and events. As you create interactions by visually connecting
components, Visual Cafe automatically generates the code that’s needed to
bind the occurrence of an event to an event handler. Therefore, you can
assemble interactive applets and applications without writing any code.

9-1

Chapter 9: Working with Events and Interactions
The key elements of an interaction are the trigger event and the action
component. The trigger event is the originator of the interaction and is
associated with a component. The trigger event determines when the
interaction happens. The action component is the component affected by
a defined action. The action specifies what to do when a condition is met.

For example, you can connect a button (the trigger component) to a text
box (the action component) so that when the user clicks the button (the
trigger event), the associated text box is enabled for data input (the action).

Note: An interaction doesn’t have to include two components. You can
create an interaction where the trigger and action component are the same.
For example, you might create an interaction on an animation component
where a mouse click anywhere within the boundaries of the component
starts an animation in that component; another click ends the animation.

About interactions in Visual Cafe

You can create, view, and modify interactions visually by using Visual
Cafe’s Interaction Wizard. The Interaction Wizard takes you step by step to
help you easily create your interactions.

Interactions are represented in the Form Designer by arrows between
components. Each interaction arrow links the trigger component to the
action component. If they are the same component, the arrow doubles
back to the trigger component. Depending on what kind of interactions
you create, arrows can appear between components, menu bars, dialog
boxes, contextual menus, and other interface elements. For more
information, see “Working with interactions” on page 9-5.

If you select an interaction arrow while in the Form Designer, you can see
the name of the interaction method in the source code in the Form
Designer’s status bar. The name is constructed so that it tells you what
object and event trigger this interaction.

You can also selectively filter what interaction arrows are displayed.
However, a newly created interaction will always appear in the Form
Designer so that you can see the result of your operations in the
Interaction Wizard. For more information, see “Choosing which
interactions are shown” on page 9-17.
9-2

About events and interactions
Deleting an interaction is as easy as deleting the corresponding interaction
arrow in the Form Designer. For more information, see “Deleting an
interaction” on page 9-17.

You don’t have to modify the source code in any way to work with
interactions, although you can do so if you wish. Visual Cafe will represent
your manually coded interactions in the Form Designer so that you can
manipulate them visually as well. For more information, see “About
interaction source code” on page 9-18.

Note: If an interaction is incomplete, an alert will display when you try to
modify it in the Interaction Wizard. To fix the interaction, you may need to
make changes directly in the source code.

Overview of creating interactions

You can create interactions in any of the following ways:

◆ By connecting components visually in the Form Designer.

◆ By using the Interaction Wizard, which provides help at each step of
the interaction creation or modification process (see “Creating an
interaction with the Interaction Wizard” on page 9-8 for details).

◆ By editing source code in the Source window.

To modify an interaction, you can simply open it in the Interaction Wizard
to make your changes. Or, if you prefer, you can edit the interaction’s
source code directly.

In general, when you create an interaction you first need to choose the
trigger component and event, and then you need to specify what happens
as a result of that event: the action. There are two parts to the action: the
action component and what happens to it. In the Interaction Wizard, there
are three different ways you can specify what should happen to the action
component; you can choose to:

◆ Perform an action

◆ Call a method

◆ Set a property
9-3

Chapter 9: Working with Events and Interactions
Perform an action lists things you can do with a JavaBeans component,
described in English (or your local language). Actions are not automatically
derived from the Bean but are explicitly specified by the Bean developer as
action descriptions in the BeanInfo file. Actions usually call one of the
component’s methods, possibly with arguments that involve other
methods. For example, you could choose the Toggle action, and this
would be the same as choosing the getState and setState methods,
with a NOT (!) operator to change the state. A Bean writer can use
actions that could not otherwise be specifed in the wizard.

Note: You can add items to the “perform an action” list in the Interaction
Wizard by editing the ActionDescriptors in the BeanInfo file. You can
add custom actions here. This is helpful in case you want to highlight
commonly used methods or allow the user to perform actions that can’t be
done as simple method calls or property settings. For more information,
see “ActionDescriptor” on page 10-28

Call a method lists all accessible methods for the component.

Set a property lists all accessible properties for the component.

If you choose a property, method, or action with arguments, you will be
asked to specify a value for the peropety or each of the arguments. Values
can either come from an object or an expression you type in. If you choose
an object, you will be allowed to select an action, method with no
arguments or variable (field) of the object.

If you specify a value that doesn’t have the same type as the property or
argument but the value can be converted to that type by one of the
standard conversions in Java, Visual Cafe will automatically insert the
appropriate conversion. The lists that you see of actions, methods, and
variables already take this into account and display only selections that
have a valid or convertible type.

When you specify a value by typing in an expression, Visual Cafe will scan
the expression to ensure that it has the same or a convertible type. If not,
you will be warned that a type mismatch has been detected. However, you
can always override the warning and generate code for the expression
anyway, as the expression might not be valid at the time but will become
valid after you add or change some components.
9-4

Working with interactions
Note: You should not use the Interaction Wizard to create interactions for
Swing components placed in an AWT container. These interactions will not
work.

Working with interactions

You can create an interaction by connecting:

◆ two components on a form in the Form Designer

◆ two components in the Project window’s Objects view

◆ two components across the Project window and Form Designer (for
example, a button in the Form Designer and a dialog component in
the Project window)

◆ a component to a contextual menu

◆ a component to a menu bar menu

◆ a component to itself

◆ a form and a component that’s contained by the form

Note: In order to create interactions between components, they must be
within the same project.

The following tasks about interactions appear in this section:

◆ Starting an interaction

◆ Creating an interaction with the Interaction Wizard

◆ Editing an existing interaction

◆ Deleting an interaction

◆ Choosing which interactions are shown
9-5

Chapter 9: Working with Events and Interactions
Starting an interaction

When you start an interaction you can visually connect components with
the Interaction Tool or go directly to the Interaction Wizard. This section
shows you how to set up the initial part of an interaction.

Starting an interaction with the Interaction Tool

You can use the Interaction Tool to begin the process of creating an
interaction.

To visually connect components with the Interaction Tool:

1 Open the Form Designer or the Project window’s Objects view to
display your project’s components.

2 Click the Interaction Tool icon in the Toolbar, then drag a line
from the trigger component to the action component within the
same project.

The action component is highlighted to help you identify which
component you selected. (If a component will not highlight, the
interaction is probably inappropriate.)

To connect a component to itself, simply double-click the
component.

3 Release the mouse button.

The Interaction Wizard appears. (See the following section for
information on using the Interaction Wizard.)

Tip: Before you release the mouse button, you can press ESC to
cancel the interaction, or move the interaction line to another
component.
9-6

Working with interactions
This is what it looks like when you use the Interaction Tool to create an
interaction:

Starting an interaction with the Interaction Wizard

If you prefer, you can go directly to the Interaction Wizard and connect
your components from there.

To start connecting components with the Interaction Wizard:

◆ Do one of the following:

❖ Select a trigger component in the Form Designer or the Project
window’s Objects view, then choose Add Interaction from the
Object menu.

❖ Right-click an item in the Form Designer or the Project
window’s Objects view, then choose Add Interaction from the
pop-up menu.

The Interaction Wizard appears.
9-7

Chapter 9: Working with Events and Interactions
Creating an interaction with the Interaction Wizard

You can use the Interaction Wizard to build interactions between
components, or between a component and itself. Visual Cafe automatically
generates the necessary code for the specified interaction.

To create an interaction with the Interaction Wizard:

1 Open the Interaction Wizard in any of the ways described in the
previous section, “Starting an interaction.”

The first page of the Interaction Wizard appears, which lists the tasks
you’ll perform. You can choose to not have this first page display the
next time you open the Interaction Wizard by selecting the checkbox
labeled Don’t show this page in the future.

Click Next to advance to the next page of the wizard.

2 Select the event you want to use to start the interaction.

The available events are listed for the trigger component you’ve
already chosen (the component you dragged the Interaction Tool
from). The events are grouped by default into similar categories; you
can ungroup them and list them in alphabetical order by deselecting
the Group Events checkbox.
9-8

Working with interactions
The default trigger event is highlighted for you, but you’re free to
choose which trigger event you want to use.

When you’re done, click Next to advance to the next page of the
wizard.

3 Choose what you want to happen when the trigger component
makes the selected event occur. You can choose to perform an
action, call a method, or set a property. Notice that available
actions are listed in English text, not in Java code format, in order
to simplify things for you.
9-9

Chapter 9: Working with Events and Interactions
You can choose an action:

Or choose a method:
9-10

Working with interactions
Or choose a property:

When you select one of the available objects and that object has no
actions, methods, or properties, the corresponding radio button –
Perform an action, Call a method, or Set a property – is dimmed and
cannot be selected.

When you’re done, click Next to advance to the next page of the
wizard.

4 If you’ve chosen a property to set or an action or method that has
arguments, then one or more additional pages – one for each
9-11

Chapter 9: Working with Events and Interactions
argument – appear, prompting you for more information. Select
the appropriate responses.

This page may occur several times, depending on the number of
arguments needed.
9-12

Working with interactions
You may also enter an expression if you like. To do so, select the Let
me enter the expression myself option, and the appropriate wizard page
appears:

You can use quotes if you’re typing in a string constant and you don’t
want to type in escape characters. If you’re typing an expression to
get a string from another object, you won’t want to use escape
characters.

When you’re done, click Next to advance to the next page of the
wizard.

5 On the final page of the Interaction Wizard, you’ll see a textual
description of your interaction, in outline form. Review this to
make sure it’s set up the way you want it. If necessary, you can
9-13

Chapter 9: Working with Events and Interactions
click the Back button to go back to earlier pages in the wizard and
make changes.

Click Finish to close the wizard.

Code is generated in your source file as appropriate, and an arrow appears
in the Form Designer between the trigger and action components, or to
9-14

Working with interactions
and from the same component if you’ve created an interaction that starts
and ends with the same component.
9-15

Chapter 9: Working with Events and Interactions
The appropriate code has now been generated and is part of your source
code. You can view it in the Source window if you wish:

If you later want to modify an interaction, you can use the Interaction
Wizard (see the following section for details).

If you modify the source code directly, it’s possible that the interaction will
only be viewable in the Source window, although Visual Cafe makes an
effort to parse the source code and make it visually editable. For more
information, see “About interaction source code” on page 9-18.

Editing an existing interaction

You can easily modify existing interactions using the Interaction Wizard,
which you use just as you did when you created the interaction. If you
prefer, you can edit interaction code manually by opening the associated
file in the Source window.
9-16

Working with interactions
To edit an existing interaction in the Interaction Wizard:

◆ Do one of the following:

❖ Double-click the interaction arrow in the Form Designer. This
opens the Interaction Wizard.

❖ Click the interaction arrow in the Form Designer, then right-
click and choose Edit Interaction from the pop-up menu.

The Interaction Wizard opens and the current settings for the selected
interaction display. You can make changes in the Interaction Wizard
by using the same wizard pages you did when you created the
interaction. Changes are made to your source code once you finish
the Interaction Wizard, thereby overwriting the code that was there
before.

Deleting an interaction

You can delete an interaction by deleting its interaction arrow in the Form
Designer, or you can manually delete it in the source code.

To delete an interaction:

1 Select one of the following in the Form Designer:

❖ An interaction arrow

❖ An object involved in the interaction (the trigger component,
the action component, or the source of an argument)

2 Press DELETE or choose Delete from the Edit menu.

The interaction is deleted.

It’s recommended that you delete interactions visually, according to the
previous instructions. However, if you’re comfortable with modifying
interaction source code, you can delete interactions manually.

Choosing which interactions are shown

You can specify what types of arrows associated with interactions that
you’d like to view in the Form Designer.
9-17

Chapter 9: Working with Events and Interactions
Note: A newly created interaction will always appear in the Form Designer
so that you can see the result of your operations in the Interaction Wizard.

To view selected interactions in the Form Designer:

◆ Activate the Form Designer, then choose Interactions from the
Layout menu, then one of the following:

❖ Show Interactions From

❖ Show Interactions To

❖ Show Interactions To and From

❖ Show All Interactions

❖ Hide Interactions

Visual Cafe displays only the interactions you’ve chosen.

About interaction source code

When you create an interaction with the Interaction Wizard, Visual Cafe
automatically generates source code for the interaction. This greatly
simplifies the development process.

If you wish, however, you can add an interaction by writing source code; it
will display in the Form Designer, with the appropriate arrows to and from
components. If you add interactions by hand, you must follow the
conventions for interaction methods exactly. An interaction method name
is composed like this:

objectname_eventname_Interaction X.

The interaction method name is the object name, followed by the event
name, followed by the word “Interaction” (all separated by underscores),
followed by a digit that uniquely identifies the interaction (for example,
button1_ActionPerformed_Interaction3).

Visual Cafe is particular about the interaction method names in order to
keep from confusing your own methods with generated interaction code.
For this reason, the ability to add interactions to the source code and have
them recognized as such is mainly useful for adding interactions previously
generated by the Interaction Wizard — for example, when migrating a file
from one project to another or when checking out a new version of a file
that others have modified. Of course, you can always add your own
9-18

About interaction source code
method calls or other code to event handlers, but these won’t be
recognized as interactions unless they follow the above conventions.

You can also go into the source code and change existing interactions.
Visual Cafe acknowledges your changes and displays them in the Form
Designer.

If you delete the code for an interaction, that interaction will no longer
display in the Form Designer.

If for some reason you change the code so that there is incomplete
information for the interaction, when you try to edit the interaction in the
Interaction Wizard an alert will appear, warning you of an incomplete
interaction.

In the Java source file, code is generated for the call handler, listener
registration, and adapter/listener class. Code is also generated for any
additional operations you specified.

When you create an interaction in the Form Designer or Interaction
Wizard, Visual Cafe performs the following steps when generating source
code:

1 Visual Cafe generates an adapter or listener implementation for the
event. If one was already generated, it’s used with the new
interaction.

2 In the adapter/listener class, Visual Cafe generates a check for the
object requesting the handling of the event and a call to the event
handler.

3 Visual Cafe instantiates this adapter/listener class and generates the
registration (specifically, object.add typeListener) after the
REGISTER_LISTENERS tag. If the adapter/listener class has
already been instantiated, it is used.

4 An event handler is generated. If the event handler already exists,
it is used.

5 A call to the interaction method is generated in the event handler.
If the call already exists, it is used.

6 The interaction method for the interaction specified in the wizard
is generated. If the method already exists, its contents are
replaced.

If you’re determined to create, edit, delete, or otherwise modify
interactions in the source code, you need to be aware of some issues
related to doing so. Being aware of information that Visual Cafe needs in
9-19

Chapter 9: Working with Events and Interactions
order to render the interactions will save you from having to regenerate or
recreate code.

◆ Names of interaction methods are specially constructed to signal that a
method is an interaction and to uniquely identify which interaction it
is. You can change the contents of an interaction method but not its
name, or it will no longer be recognized as an interaction method.

◆ If you delete either the call in a handler to an interaction method or the
method itself, the interaction arrow will disappear in the Form
Designer. If you undo these changes, the interaction arrow will
reappear. If you intend to delete the interaction from the source code,
you should delete both the call and the method.

◆ When you change the contents of an interaction method, Visual Cafe
scans the method and attempts to reconstruct an interaction that can
be edited in the Interaction Wizard. It can do so only if there are no
errors in the source code and the interaction can be represented in the
Interaction Wizard. Generally, interactions can be represented in the
Interaction Wizard if they could have been generated by the wizard in
the first place, but in some cases this reverse engineering won’t work.
For example, you can force the wizard to generate bad code, but you
can’t force the parser to accept it. Even if reconstruction fails, the
method is still recognized as an interaction, the interaction arrow will
still show in the Form Designer, you will still be able to visually delete
it, and so on. But if you try to edit such an interaction in the wizard,
you will be warned that the wizard only knows about the earlier
version of the interaction and that finishing such an edit will overwrite
your changes in the source code.

About the Java 1.1 event delegation model

In the Java 1.1 event delegation model, events are sent from an event
source to an event listener. An event source is an object that generates
events, such as an AWT component. An event listener is an object that
implements the appropriate listener interface so that it can receive events.
Event sources implement standard methods so that a listener can request
that it be notified of events. After a listener registers with a source, it gets
called whenever an event of the requested type occurs.

There are two general types of events: low-level input (or window) events,
and semantic events. Listeners may handle low-level events before the
component that originated them does. This allows a listener to consume
9-20

About interaction source code
the event so that it never gets handled by the originating component. All
low-level events are handled by all components, with the exception of
window events, which are handled only by Frame and Dialog objects.
Semantic events are higher-level events that usually indicate that a
component has changed its value.

All Java events extend the java.util.EventObject class; low-level
input events extend the java.awt.event.InputEvent class. All
listener interfaces extend the java.util.EventListener interface. All
event sources implement standard methods of the form set
EventTypeListener (where a single listener is allowed), and/or add
EventTypeListener (where multiple listeners are allowed). These
methods tell a component to notify the listener of events.

In Visual Cafe, you can usually route an event to a target component and
specify the action to be taken by using the Interaction Wizard, which
automatically writes event-related code. The Interaction Wiard creates new
listeners as needed, adds them to the appropriate components, and
performs routine event-processing tasks.

Java defines the 1.1 model events it supports in the java.awt.Event
class, which extends the Object class.

When an interaction is created in Visual Cafe, code for the interaction
method is automatically generated. If necessary, code for the listener
registration, an adapter/listener class, and an event handler is also
generated. All code conforms to the JDK 1.1 event model.

About the Java 1.0 event inheritance model

The old Java 1.0 event inheritance model shouldn’t be used for new code.
It has been replaced with the new 1.1 delegation model. Code that uses the
old event model will still run, but should be phased out.

In the old event inheritance model, all components handled events by
overriding the component’s handleEvent method. Programs that wanted
to handle events generated by a component typically either subclassed the
component or handled the event in a parent of that component.
Unhandled events eventually pass to the Component class, which discards
events it doesn’t recognize.
9-21

Chapter 9: Working with Events and Interactions
Working with event handlers

When you’re working with events and interactions, you may need to
modify event handlers. This section covers the following tasks:

◆ Adding an event handler to a component

◆ Editing an event handler

◆ Deleting an event handler

There is also an example of event handler source code that you can look
at. See page 9-24.

Adding an event handler to a component

Event-handler code is automatically added to a component’s source code
when you add an event to a component.

Visual Cafe changes the source code in four ways when you add an event
handler from the Source window:

◆ First, Visual Cafe generates an adapter or listener implementation for
the event. If one was already generated, it is used with the new
interaction.

◆ Second, in the adapter/listener class, Visual Cafe generates a check for
the object requesting the handling of the event and a call to the event
handler.

◆ Third, Visual Cafe instantiates this adapter/listener class and generates
the registration (specifically, object.add typeListener or
object.add typeAdapter) after the comment tag
REGISTER_LISTENERS. If the adapter/listener class has already been
instantiated, it is used.

◆ Fourth, an event handler is generated. If the event handler already
exists, it is used.

If instead you use the Interaction Wizard to create an interaction, Visual
Cafe makes the four modifications mentioned previously; in addition, a call
to the interaction method specified in the Interaction Wizard is generated
in the event handler and the interaction method itself is generated. For
more information, see “About interaction source code” on page 9-18.
9-22

Working with event handlers
To add an event handler in the Source window:

1 In the Objects drop-down list of the Source window, choose a
component.

2 In the Events/Methods drop-down list, choose the event or method.

Existing events and methods are shown in bold. If you choose an
event or method that is not bold, it is created for you.

3 In the event handler, replace the placeholder text //to do:
code goes here with appropriate Java code.

Editing an event handler

You can conveniently edit event handlers in the Class Browser and the
Source window.

To edit an event handler in the Class Browser:

◆ Select a class in the Class Browser’s Classes pane, then a member in
the Members pane, and edit the member in the Source pane. For more
information, see “Finding a class or class definition” on page 4-25 and
“Finding a member” on page 4-28.

To edit an event handler in the Source window:

1 Choose an object in the Source window’s Objects drop-down list.

2 In the Events/Methods drop-down list, choose the event or method.

Existing events and methods are shown in bold. If you choose an
event or method that is not bold, it is created for you.

3 Edit the Java code.

Deleting an event handler

Deleting an event handler is very similar to deleting an interaction. The
only additional consideration is to make sure that you delete all the
interactions that the event handler calls.

For more information, see “Deleting an interaction” on page 9-17.
9-23

Chapter 9: Working with Events and Interactions
An example of event handler source code

If you have a button called nextButton that displays the next image of a
slide show called slideShow1 , the interaction method could look like
this and appear toward the end of the Java source file:

void
nextButton_ActionPerformed_Interaction1(java.awt.event.Act
ionEvent event)

{

try {

//slideShow1 Go to Slideshow’s next image

slideShow1.nextImage();

} catch (Exception e) {

}

}

Note: The default name of an event handler is the object name, followed
by an underscore and then the name of the action that triggers the event.

Toward the middle of the Java source file would be the listener registration:

//{{REGISTER_LISTENERS

SymAction lSymAction = new SymAction();

nextButton.addActionListener(lSymAction);

//}}

Toward the end of the Java source file would be the adapter/listener class
with a call to the event handler:

class SymAction implements java.awt.event.ActionListener

{

public void actionPerformed(java.awt.event.ActionEvent
event)

{

Object object = event.getSource();

if (object == NextButton)

nextButton_ActionPerformed(event);

}

}

9-24

Working with event handlers
And the event handler method would call the interaction method:

void nextButton_ActionPerformed(java.awt.event.ActionEvent
event)

{

// to do: code goes here.

nextButton_ActionPerformed_Interaction1(event);

}

If you then add an interaction between slideShow1 and a Label
component (in the Form Designer, click the Slideshow component with
the Interaction tool, and drag an interaction line to the Label component),
Visual Cafe would generate a new event handler for slideShow1 , and the
listener registration code would change:

//{{REGISTER_LISTENERS

SymAction lSymAction = new SymAction();

nextButton.addActionListener(lSymAction);

slideShow1.addActionListener(lSymAction);

//}}

and the adapter/listener class code would also change:

class SymAction implements java.awt.event.ActionListener

{

public void actionPerformed(java.awt.event.ActionEvent
event)

{

Object object = event.getSource();

if (object == NextButton)

NextButton_ActionPerformed(event);

else if (object == VacationSlides)

slideShow1_ActionPerformed(event);

}

}

And the new interaction would have its own event handler method calling
the interaction method:
9-25

Chapter 9: Working with Events and Interactions
void
slideShow1_ActionPerformed(java.awt.event.ActionEvent
event)

{

// to do: code goes here.

slideShow1_ActionPerformed_Interaction1(event);

}

This example shows what happens when you add two interactions that
both use the ActionPerformed event, and thus the same listener type. If
they were to use other events, then different listeners would be used, and
the code would look a little different.
9-26

C H A P T E R 10
Working with JavaBeans
Components

In this chapter you’ll learn how to use JavaBeans components in Visual
Cafe. You’ll find out how to create and quickly update JavaBeans
components, as well as how to test your components and package them
for distribution. This chapter covers:

◆ JavaBeans services

◆ Creating a Bean

◆ Using the JavaBean Wizard

◆ Changing Bean properties

About JavaBeans and Java

JavaBeans is a portable, platform-independent Java component model. A
JavaBeans component, or Bean, is a reusable component that can be
manipulated visually in a builder tool such as Visual Cafe. Beans can be
combined to create applications or applets.

Here are some of the features of JavaBeans components that make them
attractive to software developers:

◆ Beans are discrete. Beans are typically small and have very specific
functionality. Beans can be used with other Beans to make larger and
more complex Java programs. Note that although many Beans are
small, a Bean is not restricted in size. For example, a Bean could be a
spreadsheet or a fully functional spelling checker.

10-1

Chapter 10: Working with JavaBeans Components
◆ Beans are reusable. Beans can be used over and over in unlimited
numbers of Java programs. Examples of reusable Beans are Beans that
are user-interface elements such as buttons or menus, or Beans that
perform various mathematical calculations.

◆ Beans can be configured visually in some kind of visual tool, such as
Visual Cafe. Bean properties can be easily configured to allow your
Bean to interact with other Beans that have specific properties.

JavaBeans terminology

Throughout this manual (and in other trade publications) the terms
JavaBeans component and Bean both refer to the same thing. Also keep in
mind that the term JavaBeans typically refers to the component technology
itself and not to multiple Beans.

Basic Bean structure

In the simplest sense, a JavaBeans component consists of three
fundamental parts: properties, methods, and events. This is no different
from other objects in object-oriented environments. The property portion
of the Bean describes the Bean’s state; the methods provide the interface to
manipulate the Bean’s state; and the Bean is capable of responding to
events.

A Bean’s methods can be public or private. It is through the public
methods that the Bean communicates to the outside world.

Support of features in the JavaBeans specification

Visual Cafe supports the following features in the JavaBeans specification:

◆ Invisible Beans — They’re represented at design time by icons on the
form.

◆ Internationalization — Visual Cafe supports internationalized Beans
without any issues. In addition, Visual Cafe code generation has the
ability to automatically generate code that references resource bundles
instead of constant strings.
10-2

About JavaBeans services
◆ Persistence — Visual Cafe supports serialization of Beans, including
proper handling of hidden state Beans.

◆ Event binding — Support for JavaBeans event binding is provided,
with the exception of item 6.4.1 in the JavaBeans specification (event
methods with arbitrary argument lists) and item 6.5.2 (unicast event
methods).

◆ Properties — Full support for JavaBeans properties is provided,
including indexed properties, exceptions on accessor methods, and
bound and constrained properties.

◆ Customization — Both property editors and customizers are fully
supported.

◆ Packaging — Visual Cafe supports and allows the user to specify all of
the standard manifest properties for Beans, including Java-Bean,
Depends-On, and Design-Time-Only.

About JavaBeans services

For all the fantastic things that JavaBeans components can accomplish, you
might think that there’s some highly complex system at work. Actually,
Beans have been designed to be fairly simple to use. This lack of
complexity is one strength of JavaBeans.

The component model that’s described by the JavaBeans specification
contains five major services:

◆ Property management

◆ Introspection

◆ Event handling

◆ Persistence

◆ Application builder support

These services are described in the following sections.
10-3

Chapter 10: Working with JavaBeans Components
Property management

Properties are virtual variables. They are defined by the methods that
access them. Properties can be changed in a number of ways: at run time
through setter and getter methods (these methods are described in the
following section, “Accessor and manipulator methods”), or by scripting.

The following are some examples of how Bean properties can be accessed:

◆ Programmatically via public accessor methods

◆ Visually through Visual Cafe’s property sheets (See “Application
builder support” on page 10-8 for information on property sheets)

◆ Through persistent storage and retrieval of a Bean

◆ As object fields in scripting environments (VBScript or JavaScript)

◆ Through a customizer

◆ Through a custom property editor

Accessor and manipulator methods

Accessor methods are the primary means by which a Bean’s properties are
exposed. An accessor method is a public method defined in the Bean that
reads the property value in the Bean; a manipulator method writes the
property value of the Bean. A Bean property typically has a pair of
accessor and manipulator methods called getter and setter methods. A
getter method gets (reads) the property value; a setter method sets (writes)
the property value. Each property must have a getter method; the setter
method is optional (although typically included).

Indexed properties

In addition to single-value properties, Beans support indexed properties,
properties that represent an array of values. Indexed properties in Beans
are similar to indexed properties in Java; you access a specific value using
an integer index into the array.

Indexed properties are useful when a Bean needs to maintain a group of
properties. For example, a property may be a list of names.
10-4

About JavaBeans services
Bound and constrained properties

JavaBeans supports two advanced-level mechanisms for working with
properties: bound and constrained properties. A bound property is a
property that notifies any interested party when the property value
changes. A constrained property enables an interested party to perform a
validation on a new property value before accepting the change. An
interested party is an application, applet, or another Bean that needs to
know about changes in the property.

Bound properties are defined at the component level, which means that
the Bean is responsible for specifying that a property is bound. For
example, the visibility property of a Bean could be a bound property

A constrained property enables an interested party to perform a validation
on a changed property value before the Bean accepts the change. A
constrained property can be used to enable an interested party to control
how the Bean is modified. For example, a date may be designated as
constrained where the application containing the Bean needs to limit the
valid range of dates.

Bound and constrained properties are not mutually exclusive. A property
may be designated as bound or constrained — or neither or both.

Introspection

Introspection is a Bean’s ability to make public (or “publish”) the
operations, methods, and properties it supports, as well as be able to
discover operations, methods, and properties of other Beans.

Note: Although the introspection services in JavaBeans are designed
primarily for use by application-builder tools such as Visual Cafe, they are
a separate service because they can be used independently of Visual Cafe.

Introspection calls on two API processes: the Java Reflection API and the
Java Serialization API. The Java Reflection API (or simply reflection) is a set
of classes that looks into a class file and examines the properties, methods,
and events of Beans. The Java Serialization API (or simply serialization) is
used to store the class, including its state. Visual Cafe uses these two Java
API functions to allow easy creation and modification of Beans.
10-5

Chapter 10: Working with JavaBeans Components
If there is a BeanInfo file associated with a Bean, then Visual Cafe uses
introspection with that Bean. If there isn’t a BeanInfo file, then Visual
Cafe uses reflection (see the following section).

Reflection and design patterns

Beans can determine information about another Bean’s properties,
methods, and events by analyzing the Bean using a set of low-level
reflection services. Reflection is the process of querying a Bean to
determine information about its public facilities and functionality.

These services gather the Bean’s information by applying simple design
patterns. Design patterns are rules that are used to determine information
about a Bean from its reflected method names and signatures. The
JavaBeans introspection facilities match them based on a specified design
pattern of the method names and automatically determine the property
they access.

Design patterns rely on method names and signatures that conform to a
standard convention as defined in the JavaBeans specification (which can
be found on Sun Microsystems’ web site at
http://java.sun.com). This approach to introspection encourages
Bean developers to use consistent naming conventions.

Explicit Bean information

Design patterns are not required or strictly enforced; you’re free to use
whatever naming conventions you want. If you choose to do so, Beans
must use the explicit introspection facility. You must provide specific
information about the Bean, including a property descriptors, method
descriptors, and event descriptors. This information goes into a BeanInfo
class that must be included with the Bean in its JAR (Java Archive) file.
Although this feature is not automatic, there may be some situations where
this approach is advantageous. For example, explicit introspection is
helpful in situations when you want to hide some information (properties,
methods, or events) and show only certain information.

The Introspector

The JavaBeans Introspector service can consolidate the reflection and
explicit introspection approaches. First, it tries to use information explicitly
provided by the Bean’s developer. If that information is not provided, the
introspector relies on design patterns to try to get the Bean information.
10-6

About JavaBeans services
Event handling

The event handling facilities determine how Beans respond to changes in
state and how these changes propagate to applications (and other Beans).
The event handling in JavaBeans works with the concepts of event sources
and event listeners.

An event source is a Bean that’s capable of generating events. An event
listener is an application (or Bean) that’s capable of responding to events.
An event state object is used to store information associated with an event.

Event sources and event listeners are connected using an event registration
mechanism that is part of JavaBeans. This registration links the source with
one or more listeners. When the source generates an event, a designated
method is called on the listener with an event state object sent as an
argument. Event state objects carry information related to the event with
them.

Unicast and multicast event sources

In practice, most event sources are multicast event sources. That is, more
than one listener can be registered with the event source.

A unicast event source is an event source that can generate events for a
single listener. A multicast event source is an event source that can
generate events for more than one listener.

The main difference between the two is that a unicast event source throws
an exception when an attempt is made to register more than one listener.

Note: You should avoid using unicast event sources unless there is a
specific reason to do so.

Event adapters

Event adapters are classes provided to simplify the implementation of event
listeners. They implement the listener interfaces with empty methods.
When a listener is needed, using an event adapter allows you to write only
the method of interest.

In a Bean’s interface are a number of empty methods that act as
placeholders. If you want to implement this interface, you would normally
10-7

Chapter 10: Working with JavaBeans Components
have to create signatures for all the methods that are defined in the
interface, whether you want to use all the methods or not. A method
signature is something like the following method declaration: int Foo
(Boolean) .

By using an event adapter you have to create a signature for only the
method or methods you want to use.

Persistence

Persistence is the ability of a component to remember and store its state
long after you’re finished working with it. When you change the state of
your Bean, you might want your Bean to store, or persist, the changed
state. A Bean’s state can change because of some action that affects the
Bean during development or at run time.

Bean storage

Beans are stored in JAR (Java Archive) format. These JAR files are ZIP files
that contain another component called a manifest file. This manifest file
contains additional information about what else is in the JAR file. For more
information, see “About JAR files” on page 5-54.

Application builder support

The Application Builder Support service that’s a part of JavaBeans is what
enables your Bean to be smoothly integrated into the Visual Cafe
environment

An intended side effect of Application Builder Support is the separation of
design-time and run-time code. It would be wasteful to bundle the design-
time-specific code with your Bean for distribution (think of the Web
bandwidth!). Placing the design-time code into a separate file solves this
problem.

Property editors and property sheets

Visual Cafe supports the editing and manipulation of a Bean’s properties
through property sheets. A property sheet is a Visual Cafe user interface
element that provides access to property editors for each of the properties
of the Bean. A property editor is a user interface that the Bean’s
10-8

About building Beans
developer implements to set the default state of one property type. That
means, for example, that you use one kind of property editor for strings
and another kind for colors.

Property editors can be different, even though they might edit the same
property type. For example, two property editors might both edit strings,
but one may edit names, and the other addresses. As you can see, a Bean
can have many property editors.

Customizers

JavaBeans enables you to visually edit your Beans in Visual Cafe through
customizers. Customizers are user interfaces that the Bean’s developer
implements that extend the Bean’s standard properties. Customizers can be
used to edit many properties at a time, and a Bean can have only one
customizer. You can also use customizers to edit hidden values that are
otherwise unavailable through the Property List.

About building Beans

You want to design your Bean to be reused — that’s one of the main
reasons for creating Beans. It’s important for you to fully evaluate the
functional specifications of a Bean before you begin writing any code. This
has always been good programming practice; however, it’s especially
crucial because of the nature of JavaBeans components and how they’re
used. For example, you want your Bean to be backward compatible as it
evolves, so you need to make sure that the interfaces to the Bean are
extensible enough to provide room for added functionality.

Bean design fundamentals

The Bean-design process doesn’t need to be complex. At a minimum you
should consider questions such as the following:

What does the Bean do?

The answer to this question helps you to clearly identify what the Bean is
to accomplish as a reusable piece of software.
10-9

Chapter 10: Working with JavaBeans Components
How is the Bean used?

The answer to this question depends on the functionality you have in
mind. For example, you might be planning a Bean as a specific part of an
application. It might be visible or invisible. It might be a customizable
component.

No matter what you’re planning for the Bean, be sure you have a good
idea of how the Bean is to be used by the end user.

What kind of properties, methods, and events does your
Bean need?

You need to figure out how the Bean will interact with the outside world.
You must consider how the Bean will handle input and output, and events
and interactions. How the Bean handles these dictates what properties,
methods, and events you need to create.

Creating a Bean

The following sections provide step-by-step instructions for creating a
Bean. The following topics are covered:

◆ Overview of creating a Bean

◆ Using the JavaBean Wizard

◆ Testing your Bean

◆ Packaging your Bean for distribution

◆ Packaging your Bean for distribution

◆ Adding an existing Bean to the Component Library

◆ Deleting Beans from the Component Library

Overview of creating a Bean

Visual Cafe provides a number of tools that make creating JavaBeans
components easy, including a JavaBean Wizard.. This section provides an
overview of the Bean-creation process; each step is described in detail later
in this chapter.
10-10

Creating a Bean
Tip: You can create a component template by dragging a component from
the Project window (Objects view) to the Component Library. The source
file is copied by Visual Cafe, so you don’t have to keep the files in the
same location. A component and a component template appear the same
in the Component Library, and you add them to projects in the same way.

To create a Bean:

1 Create a new project for developing one or more JavaBeans
components.

You can get started quickly by using the JavaBean Wizard.

For information about the JavaBean Wizard, see “Using the JavaBean
Wizard” on page 10-12.

2 Create the Bean according to the JavaBeans standard.

This includes adding any necessary support files such as classes,
icons, graphics, sounds, HTML documentation, serialization files, and
localization files. If you add support files to the project, they’re
automatically included when you create a JAR file from the project
with the Visual Cafe JAR utility. For more information, see “About JAR
files” on page 5-54.

3 (Optional) Add to BeanInfo some information for better
integrating the Bean into the Visual Cafe environment and other
environments.

For details on this step, see “Adding Visual Cafe information to a
Bean” on page 10-27.

4 To package your Bean or Beans in a JAR file, choose JAR from the
Project menu.

For details, see “Adding external files to a JAR” on page 5-55.

Note: When you add a JAR file to the Component Library, all
JavaBeans components in the JAR file are added (as specified in
the manifest file). You cannot remove one component
independently of the others in the JAR file.

5 To use and test the Bean within the Visual Cafe environment, add
it to the Component Library.

For details on this step, see “Adding an existing Bean to the
Component Library” on page 10-21.
10-11

Chapter 10: Working with JavaBeans Components
If you create JavaBeans components and want to use them in a new
project, you can update your component project file and have the changes
applied to any project that uses the component. See “Automatically
updating Beans in the Component Library” on page 10-19 for more
information.

Using the JavaBean Wizard

The JavaBean Wizard can help you easily create JavaBeans. The JavaBean
Wizard steps you through a series of choices and then generates the class
and BeanInfo source files for you, based on your selections. The wizard
creates two files: nameBeanInfo.java and beanclass.java, where
name is the name of your Bean.

To learn more about Beans, refer to Sun Microsystems’ web site at
http://java.sun.com .

You can either start the JavaBean Wizard and create a new project, or add
a Bean to a new project.

To add a Bean to a new project:

1 Activate the Project window for the project you want to add a
Bean to.

2 From the Insert menu, choose JavaBean.

The JavaBean Wizard opens.

To start the JavaBean Wizard and create a new project:

1 Choose New Project from the File menu.
10-12

Creating a Bean
2 Select JavaBean from the submenu and click OK. The JavaBean
Wizard appears:

If you don’t want to access this page again, select Do not show this
page in the future.

Tip: If you ever want to view the Introduction page again, simply
click Back from the Name and Package page of the wizard.

Click Next to go to the next page.
10-13

Chapter 10: Working with JavaBeans Components
3 Enter a Bean name and package (choosing a package is optional).

The Bean name can contain Unicode letters and digits, starting with a
letter, and shouldn’t be the same as a Java keyword. There is no
length restriction.

Click Next to access the next page.

4 Choose a Bean type.
10-14

Creating a Bean
5 Choose a Bean weight or base class (if creating a custom Bean).

6 Select override methods (optional).
10-15

Chapter 10: Working with JavaBeans Components
7 Create properties (optional).

If you want to add a property, click Add Property. The Add Property
dialog box appears.
10-16

Creating a Bean
8 Add icons (optional).

If you’ve chosen to add icons, they are also added to your project, as
shown in the Project window’s Files tab. This allows the icons to be
added to the JAR when you build your project.

9 Review your choices.
10-17

Chapter 10: Working with JavaBeans Components
Testing your Bean

As you develop your Bean, you can incrementally test and debug the
functionality using Visual Cafe. For information on Visual Cafe’s debugging
environment, see Chapter 6, “Debugging Your Program.”

Updating Beans that are local to your project

You can add a Bean to the top level of the Objects view of the Project
window, then drag it onto another form in the same project to use the
Bean. The Bean becomes part of that form, and yet remains as a top-level
object in the Project window. If you modify the Bean, choose Update
Project Beans from the Project menu to update the Bean on the form. You
don’t have to place your bean in a JAR and drag it to the Component
Library before you can use it in your projects. In addition, you can view
and modify the Bean properties in the Property List.

This process is similar to when you’re making changes in a dialog box and
then, when you’re finished with the changes or want them to be saved,
you click OK or Apply. Updating the Beans in your project saves the recent
changes and makes the most up-to-date version available for use in other
projects.

You can choose to enable or disable Beans that are local to a project upon
opening the project.

To enable or disable project Beans upon opening a project:

1 Choose Options from the Project menu.

The Project Options dialog box appears.

2 If the Project tab isn’t already active, select it to make it active.

3 Select Update project beans on project open to update any local
project Beans upon opening the associated project.

Deselect this option if you don’t want Visual Cafe to update local
project Beans when opening the associated project.

4 Click OK.

The changes take effect immediately.
10-18

Creating a Bean
Automatically updating Beans in the Component Library

Visual Cafe enhances the development of JavaBeans components by
providing a single command that immediately shows updates made to
Beans, providing a tool for dynamic development. After modifying the
form, source code, or events in your JavaBeans components, use AutoJAR
to update the JAR file. You quickly see the results of those modifications in
real time, because any open projects using those components are
automatically updated.

Choosing AutoJAR automatically:

◆ saves your source files

◆ compiles your source files into class files

◆ creates a JAR file with a manifest file

◆ adds the JAR to the Component Library

The process of dynamically developing Beans involves preparing a
JavaBeans component for dynamic development, modifying code, and
updating the Component Library. Each of these steps is explained below.

To prepare a JavaBeans component for dynamic development:

1 Create a Bean using the JavaBean Wizard.

For details, see “Using the JavaBean Wizard” on page 10-12.

If you choose to use existing source code by adding a source file to
the project, you can include a corresponding
BeanNameBeanInfo.java file, where BeanName is the name of
your Bean.

2 Choose AutoJAR from the Project menu.

If you want to customize how Visual Cafe creates JAR files, you can
do so by setting deployment options for a project or for all projects.
For more information, see “Setting deployment options” on
page 5-38.

Your JavaBeans component now has a JAR file and has been added
to the Component Library, and all open projects using this
component have been updated.

The manifest file generated by AutoJAR automatically includes the
following attributes for class files that follow this pattern:
10-19

Chapter 10: Working with JavaBeans Components
❖ If a name.class file is a public, non-abstract class and has a
constructor that takes no arguments, then Visual Cafe will
automatically set that class file to be a Bean. It will have the
attribute and value of Java-Bean:True .

❖ If a class file is an instance of either java.beans.BeanInfo ,
java.beans.Customizer , or
java.beans.PropertyEditor , Visual Cafe automatically
marks the file as Design Time Only . It will have the
attribute and value of Design-Time-only:True .

Note: Make sure you select Add to Library so your JavaBeans
component is added to the Component Library. For more
information, see “Setting deployment options for a project” on
page 5-39.

3 Open a different project and add your new JavaBeans
component(s).

Now, if you later modify the code of your JavaBeans component, you
can dynamically update it in the Component Library and in all
projects where it’s used.

Note: In order to dynamically update your JavaBeans components, before
making any modifications to the form, source code, or events of the project
that contains the JavaBeans component you should have run AutoJAR on
the JavaBeans component.

To dynamically develop with JavaBeans components:

1 Make any necessary modifications to the form, source code, or
events of the project that contains the Bean.

2 Choose AutoJAR from the Project menu again to update the
JavaBeans component(s) in the Component Library and all
instances of the component(s) in any open projects.

Note: If your project is not open at the time you run AutoJAR, all instances
of your components are updated the next time you open that project.
10-20

Creating a Bean
Note: If you replace a JAR file added to the Component Library by
dragging and dropping from Windows Explorer or by choosing Add
Component into Library from the File menu, all instances of components in
the JAR that are in any open projects are automatically updated.

Packaging your Bean for distribution

After you’ve developed and tested your Bean, you need to package it for
distribution. Beans are packaged into compressed archive files called JAR
files. For more information, see “About JAR files” on page 5-54.

Adding an existing Bean to the Component Library

You might get a Bean from a colleague, from your favorite software source,
or from the Internet. Where do you put it?

To use an existing JavaBeans component in Visual Cafe, you must add it to
the Component Library. You can add class or JAR files. The Bean must
comply with the JavaBeans standard for it to be added. After you add a
Bean:

◆ The component appears in the Component Library.

◆ If an icon was specified in the BeanInfo file, the component uses
that icon. If the BeanInfo getIcon method returns NULL, Visual
Cafe uses the icon of a base class already in the Component Library.
Visual Cafe examines the classes the JavaBeans component inherits
from and picks the class deepest in the inheritance hierarchy. The icon
of this class is used with your new JavaBeans component.

◆ If the get and set methods conform to the JavaBeans design pattern,
the component properties will appear in the Property List window.
You can edit properties as a text field, a drop-down list, or in a dialog
box, depending on the property. The dialog box appears if you click a
field value then click the Browse (…) button when custom property
editors are provided.

◆ Visual Cafe derives the actions, methods, and properties displayed in
the Interaction Wizard. It determines the actions from explicit
specifications in the BeanInfo class. Methods and properties are
determined through reflection and introspection.
10-21

Chapter 10: Working with JavaBeans Components
Note: When you add a JAR file to the Component Library, all JavaBeans
components in the JAR file are added (as specified in the manifest file).
You cannot remove one component independently of the others in the JAR
file.

You can also automatically add the Bean to the Component Library during
development. For more information, see “Automatically updating Beans in
the Component Library” on page 10-19.

To add a Bean to the Component Library:

1 Make sure the component’s class or JAR file is in the location
where you want to store it.

Note: For class files, this location must be in your class path. For
example, c:\VisualCafe\java\lib is in your class path.
Remember that class files are case-sensitive. If you want to add the
class file to a package, the class file must be in the package
directory.

2 Choose Add Component into Library from the File menu. (This menu
item is available only when a project is open.)

An Open dialog box appears.

3 Select the class or JAR file, then click Open.

For a class file, an Add to Library dialog box appears.

For a JAR file, Visual Cafe inserts the Beans into the Component
Library. The Beans are put in a group with the same name as the JAR
file, unless another group name was specified in BeanInfo .

4 For a class file, select a group and then click OK.

A dialog box appears that lists the number of components that were
added in a JAR file to the Component Library.

The component appears in the Component Library. You should verify
that it is there. (You can display the Component Library by choosing
Component Library from the View menu.)

5 If you want to add the component to the Component Palette,
select the component in the Component Library, right-click the
component, and choose Add to Component Palette from the pop-up
menu.

You can also specify the folders in the Component Palette and
Component Library from which you want the Bean to be accessed.
10-22

Creating a Bean
Here are some considerations when inserting Beans:

◆ If a component is not added to the Component Library, it most likely
does not comply with the JavaBeans standard.

◆ If you change or move a class or JAR file after it is in the Component
Library, the change is not recognized until you restart Visual Cafe or re-
add the file.

◆ Some components are made of more than one class file (for example,
if the Java source file for a component has inner classes). You need to
make sure these class files are in the class path. You cannot add inner
classes by themselves into the Component Library. In order to add
inner classes, they must be part of the JAR file.

Caution: After you insert a JAR file, you should not move it to a new
location. If you move it, Visual Cafe will be unable to find it.

Deleting Beans from the Component Library

As you’re developing your project, you can delete user-created objects in
the Component Library. Deleting a component from the Library also
removes the component from the Component Palette.

To delete a Bean from the Component Library:

1 In the Component Library, select the object to be deleted.

2 Choose Cut from the Edit menu or press the DELETE key.

The other Beans in the JAR are also removed automatically.

Converting component description files to Beans

In Visual Cafe 1.0, you needed to create a separate description file (with
an extension of .desc). This file contained the explicit instructions on
how a Bean was supposed to function and what results to expect. In Visual
Cafe 3.0, description files are no longer needed for Beans. If you want to
reuse a component that you developed in an earlier version of Visual Cafe,
or if you want to use third-party components, you need to convert your
description file to a Bean. Visual Cafe includes a utility called the
Description File Converter to help you with the conversion process.
10-23

Chapter 10: Working with JavaBeans Components
To convert a Visual Cafe 1.0 component to a Bean:

1 Run the Description File Converter.

To do so, double-click the \Bin\DescToBeanInfo.bat batch file,
which is the DescFileConverter folder of the main Visual Cafe
folder.

The Description File Converter dialog box appears. You can view the
Java version by going to the Help menu and choosing Environment.

2 Click the Location tab.

3 In the Description File Directory field, enter the full path to the
directory that contains one or more description files you want to
convert. You can use the Browse button (…) to specify the
directory.

4 If the component icons are with the description files, select .ico
Files are with .desc files. Otherwise, in the Icon File Directory field,
specify the location of the corresponding icon files, if present.

5 In the Output Directory field, specify the full path to a directory
where you want your output files (BeanInfo and .gif) to go.

When the description file is converted, the name of the output file is
the first part of the Bean name (without the extension), appended
with BeanInfo.java ; the icon files are converted to .gif files.

6 Select relative or absolute to specify the relative or absolute
directory.

If you select relative, the fully qualified class name is used to create a
directory structure subordinate to the output directory. For example,
if the output directory is c:\temp and the class name is
symantec.beans.Beans , then Beans.java will be placed in the
directory c:\temp\symantec\beans .

If you select absolute, all files are placed in the directory you specify.
This could potentially cause file name conflicts, because the package
directory structure isn’t preserved.

7 Click the Selection tab and select the files you want to convert.
SHIFT-click to select multiple files. Click Select All Listed Files to
select all files.

8 Choose Convert from the File menu.

A dialog box appears when the conversion is complete. The files are
displayed in the output directory; if the path was relative, the files are
in a directory subordinate to the output directory. For each
component entry in a description file, a BeanInfo.java file is
10-24

Viewing and changing Bean properties
created. For each icon file, a 16-by-16 and a 32-by-32 .gif file is
created. For the latter, the 16-by-16 image is expanded to a 32-by-32
size.

Viewing and changing Bean properties

Each Bean has a set of properties that define its look and behavior. Visual
Cafe provides a Property List from which you can directly modify these
properties. When you change a property, the source code and Form
Designer are immediately updated.

To view or change the properties of Beans in a project, select one or more
components in the Form Designer or Project window.

To view or change the properties of Beans in the Component Library and
Palette, select one or more Beans in the Component Library. Remember
that if you change the properties of a component in the Component
Library, the change now appears every time you add that component to a
project. Projects that already contained the component before you changed
it are not affected. (For information on using the Component Library and
Palette, see Chapter 7, “Working with Components.”)

Using the Property List to modify Bean properties

You can use the Property List to modify the properties of a Bean.

To modify Bean properties:

1 To display the Property List, choose Property List from the View
menu (or press F4).

2 Select a component in the Form Designer, Project window,
Component Library, or the Property List’s pull-down menu. To
select multiple components, CTRL-click in the Form Designer,
Project window, or Component Library, or SHIFT-click or drag in
the Form Designer.

When multiple components are selected, only their common
properties are shown and editable. In the Property List, you see the
heading Multiple Selection.

3 To edit a property, click the right column, double-click the left
column, or use TAB in the Property List.
10-25

Chapter 10: Working with JavaBeans Components
The right column displays a list of valid values or makes the text
string editable.

Properties with multiple values (for example, the Font property) are
marked with a plus sign (+). Click the + to expand the list.

Properties that are defined with additional information are marked
with the ellipsis button (…). Click the … button, and a dialog box
appears which is appropriate for that property.

4 Press ENTER or click somewhere else to make the change.

Tip: Press ESC to cancel an edit and return the property to its
previous value.

Using a customizer to configure a component on a form

Visual Cafe allows you to call an available customizer to configure the
characteristics of a Bean. Use a customizer when you want more guidance
for configuring a Bean’s behavior than the Property List provides. A
customizer can configure more than one property at a time, and many
have a wizard-like interface.

Even if Visual Cafe detects a bd.SetValue(“hidden-state”,
Boolean.True) statement in a Bean’s BeanInfo file, you can still
access the Bean’s customizer. Visual Cafe now supports serialization for
hidden-state customizers.

Note: Customizers will vary, because each Bean has a unique customizer
created by the Bean’s developer. Not all Beans can have a customizer.

To access a Bean’s customizer:

1 Do one of the following:

❖ Right-click a component in the Project window (Objects view)
or the Form Designer, and choose Customize from the pop-up
menu.

❖ Select a component in the Project window (Objects view) or the
Form Designer, and choose Customize from the Object menu.

❖ Right-click a component in the Project window (Objects view)
or the Form Designer, and double-click the Customize property
in the Property List.
10-26

Viewing and changing Bean properties
If the Customize menu item is not available, the component does not
have an available customizer.

2 Make any necessary changes in the customizer.

After you complete the customizer, the appropriate code is generated.

Adding Visual Cafe information to a Bean

Beans have introspection, the ability to read JavaBeans classes directly with
the Java Reflection API using the Introspector class. This information is
stored in a BeanInfo object and includes data such as properties, events,
and all the accessible methods. In addition, you can add information about
how a Bean should integrate into the Visual Cafe environment. The
integration information is provided through BeanDescriptor attributes
specific to Visual Cafe and the
com.symantec.itools.vcafe.beans.ActionDescriptor class.

A quick description and code samples follow; for more information, see
the Java API reference, which is available from the Help menu.

Visual Cafe BeanDescriptor attributes

Visual Cafe supports the standard JavaBeans conventions. In addition, it
supports some attributes that allow Beans to work better within the Visual
Cafe environment. You can specify the following attributes in the
BeanDescriptor area of BeanInfo to further integrate your Bean into
the Visual Cafe environment:

◆ The name of a Component Library group (folder) to put the Bean in

◆ The name of a Component Palette tab to put the Bean in

◆ Whether to forbid users to drop other components into this Bean (if
this Bean derives from java.awt.Container)

◆ Visual Cafe flags, such as INVISIBLE for specifying non-visual
components

◆ Visual Cafe actions (used by the Interaction Wizard)

The constants for these attributes can be found in
com.symantec.itools.vcafe.beans.
BeanDescriptorAttributes .
10-27

Chapter 10: Working with JavaBeans Components
ActionDescriptor

The ActionDescriptor class extends from
java.beans.FeatureDescriptor . An ActionDescriptor
encapsulates a Visual Cafe action, which is used by the Interaction Wizard.
A Visual Cafe action specifies something done to or by the Bean. The
Interaction Wizard allows users to graphically connect these actions
together, and Visual Cafe is able to generate the code for the specified
action based on the information encapsulated in the
ActionDescriptor . For more information about the Interaction Wizard,
see Chapter 9, “Working with Events and Interactions.”

The action is made up of five pieces:

◆ Form – Determines whether the value of an action is INPUT or
OUTPUT. An input action sets a variable or calls a method; an output
action returns a value.

◆ Type – Sets the Java type of the input or output value of the action.

◆ Expression – Defines the code that’s generated to create the action.
Properties and the following replacement variables are allowed in the
code string:

❖ %name% – name of the component

❖ %class% – short class name of the component (for example,
JButton rather than com.sun.java.swing.JButton)

❖ %arg% – argument used for output actions

◆ Description – Supplies an English description of the action. This string
appears in the Interaction Wizard. %class% is allowed.

A Visual Cafe action looks like a method call. However, an action can be
more than that; it can be a “metamethod.” Any valid code expression can
be used to generate the action; for example, the action “Toggle pause”
might have

%name%.setPaused(!% name%.isPaused());

as the code expression. (In this expression %name% is a replacement
variable for the name of the component.) An action does not have to be
tied to a method; for example, the action “Point the button arrow LEFT”
might have the code expression %name%.LEFT.

The ActionDescriptor methods allow you to set the form, type,
expression, and description of a particular action. If an action is tied to a
10-28

Viewing and changing Bean properties
specific method, its ActionDescriptor is associated with that method’s
MethodDescriptor .

Currently, the association uses the MethodDescriptor ’s inherited
method setValue , passing in a Vector of all ActionDescriptor
objects to be associated with that method.

Code samples

Following are three code samples that show three different ways of
implementing the BeanInfo information that’s specific to Visual Cafe.

The following code sample shows how to use an ActionDescriptor in
a getMethodDescriptors override:

import com.symantec.itools.vcafe.beans.ActionDescriptor;

import com.symantec.itools.vcafe.beans.MethodDescriptorAttri
butes;

Before returning a MethodDescriptor from a
getMethodDescriptors override, you’ll want to add the action
descriptor to it:

ActionDescriptor borderNoneActionDescriptor = new
ActionDescriptor();

borderNoneActionDescriptor.setForm(ActionDescriptor.OUTPUT);

borderNoneActionDescriptor.setType(“int”);

borderNoneActionDescriptor.setExpr(“%name%.BORDER_NONE"”);

borderNoneActionDescriptorr.setShortDescription(“BORDER_NONE
”);

//ActionDescriptors are provided in a Vector, you can add as
many as you want per method

//In this example, we only provide one

java.util.Vector borderActions = new java.util.Vector();

borderActions.addElement(borderNoneActionDescriptor);

//Set the MethodDescriptor attribute for actions

methodDescriptor.setValue(MethodDescriptorAttributes.ACTION_
ATTRIBUTE,borderActions);
10-29

III

P r o f e s s i o n a l

F e a t u r e s

C H A P T E R 11
Creating Native Win32
Java Applications

This chapter provides an overview of the steps you must follow to create
native Win32 Java applications and DLLs or convert existing bytecode
applications to native code; things to remember while working with native
applications; and an example of creating a simple native executable
with a DLL.

If you have the Visual Cafe Professional Edition or Visual Cafe Database
Edition, then you can make use of these native features.

About native Win32 applications

Visual Cafe lets you create native Win32 Java applications that run without
using the Java Virtual Machine. Native Win32 Java applications offer the
following advantages over bytecode Java applications:

◆ Speed – Because you don’t need to run native Win32 applications
using a Java Virtual Machine, applications will run faster.

◆ Packaging – Unlike bytecode Java applications, in which all the class
files must be available in order to run the application, Native Win32
Java projects can create an executable (.exe) file that contains all the
class information.

◆ Compatibility with existing executable and Dynamic Link Library (DLL)
files – You can include code already written in C or C++ in your native
Win32 Java applications with minor modifications.

A Dynamic Link Library (DLL) is a library that is linked to programs

11-1

Chapter 11: Creating Native Win32 Java Applications
when they are loaded or run, rather than as the final phase of
compilation.

◆ Portability – Applications written for native Win32 still generate all the
class files necessary to port the Java code to another platform.

Native libraries and DLLs included with Visual Cafe

Visual Cafe includes libraries and DLLs to support native application and
DLL development.

Support for native development includes several Sun and Symantec Java
API packages that are already converted to DLLs.

To find out what classes are specifically contained in each DLL, see
packlst.txt in the VisualCafe\Redist folder. This file will always
have the most current information regarding the classes stored in each DLL.

Creating native executables and DLLs

The process of creating a native executable or DLL file is very similar to the
process used to create bytecode Java applications. In general, the
development cycle consists of these basic steps:

1 Create a new project.

To get started quickly, you can use the Win32 AWT Application,
Win32 Console Application, or Win32 Dynamic Link Library project
template.

For more information, see “About files in a project” on page 3-42.

2 Design the user interface.

See Chapter 7, “Working with Components.”

3 Enhance the project’s Java source code.

See Chapter 4, “Working with Source Code.”

4 Set the project options.

See “Setting project options for native programs” on page 11-7.

5 Test run the application or DLL in Visual Cafe.

See Chapter 5, “Compiling and Deploying Your Project.”

6 Debug the application or DLL, if needed.
11-2

Creating native executables and DLLs
See “Debugging native programs” on page 11-6.

7 Test run the application or DLL outside of Visual Cafe.

8 Deploy the application or DLL.

See Chapter 5, “Compiling and Deploying Your Project.”

9 (Optional) Register the DLL using SNJREG.EXE, if necessary.

See “Registering DLLs using SNJREG” on page 11-19.

You can see an example of creating a simple native executable with a DLL
can be found in the section “Example: Creating an executable file” on
page 11-22.

Considerations when creating native Win32 Java applications

When you’re developing native Win32 Java applications, there are several
things you can do to minimize build errors. Keep the following
considerations in mind when you’re creating native Win32 applications:

◆ Keep all the files in a single project. Build any DLLs as subprojects that
you add to the main project.

◆ Use SNJREG to register any Java DLLs you create.

◆ When you’re compiling DLLs in the command line, use the -export
option.

◆ Remember that SNJRT11.LIB is automatically linked to your project.

◆ During run time of the executable, make sure that the path includes
the correct folder that contains the DLLs.

◆ Statically linked DLLs have to be in the Windows path. For an
example, see the staticDLL sample in the
Samples\Symantec\Tutorials\Win32 folder.

◆ Before you run an application that dynamically loads classes during
run time, you must register the DLLs using SNJREG. For example, if
you use Class.forName(className) to access a class in a DLL,
you need to register the DLL. The dynamicDLL sample in the
Samples\Symantec\Tutorials\Win32 folder illustrates this.

◆ If you link object files that contain static members to different library or
DLL files in a project, be aware that there will then be more than one
copy of the static member.
11-3

Chapter 11: Creating Native Win32 Java Applications
◆ Do not include any library files in the Files tab of the Project window.
Include library files in a project by using the Compiler tab in the Project
Options dialog box. For more information, see “Including library files to
link into your native program” on page 11-14.

In addition to the considerations listed above, you must keep in mind that
native Win32 Java application development uses a link step after compiling
and that the main class is treated differently in native Win32 development
than in bytecode development.

Linking native Win32 applications

For a native project to link, you may have to perform extra steps that you
don’t need to perform for a bytecode project. In bytecode programs, Java
uses the classpath to dynamically and automatically resolve references to
classes. However, in native applications the Java classpath is not used to
resolve these references. They must be resolved by static linking, which
means they are resolved when the application is built.

Resolution by static linking occurs in the traditional compile/link
mechanism. The object (.obj) files, which are generated by the SJ
compiler for each Java class, are linked together by the linker, which
resolves the references. Visual Cafe supplies the linker with the object files
and libraries necessary to build your native Java executable. Linker errors
will occur if the linker was unable to resolve a reference made to a class in
your project. Typically, this means an object file that corresponds to a class
that your project uses didn’t get passed to the linker by the project system.
Standard Java run-time libraries and Visual Cafe components are
automatically passed to the linker by Visual Cafe.

Visual Cafe may report “symbol undefined” errors when you build your
project. These errors will be reported in the Messages window. If this
happens, you need to get these symbols resolved by making them known
to the linker. The simplest way to do this is to add the Java source file for
any missing classes to your project. Other possible techniques include
adding appropriate object files or import libraries to your project. Any
symbols in source files, object files, or import libraries that are in your
project will be passed to the linker and used to resolve references when
you build an application. Various ways to do this are discussed in the
linking examples in the VisualCafe\Samples folder.

As with bytecode programs, native Java applications allow programs to
dynamically load arbitrary classes at run time, without requiring them to be
11-4

Creating native executables and DLLs
statically linked. However, classes that are not statically linked into your
application at build time must exist in a separately compiled DLL and be
registered in the Windows registry using the SNJREG tool. For more
information, see “Registering DLLs using SNJREG” on page 11-19.

The main class in bytecode and native applications

The main class is the name of the class that contains the main method. For
both a bytecode Java application and a native Win32 Java application, the
main method in the main class is the starting point of execution. However,
you should note these differences between bytecode and native
applications:

◆ When you run a bytecode application from the command line, you
type the name of the Java file that contains the main method as the first
argument to Java.exe . For a native Win32 application, you run the
application outside the Visual Cafe environment as you would any
other executable and use the application name, not the main class
name. See “Specifying a program for running and debugging a DLL” on
page 11-9 and “Specifying the name of a native application or DLL” on
page 11-7 for more information.

◆ An application must have a main class containing a main method with
this signature:
static public void main(String args[])

If a bytecode application does not have a method of this format, the
application can compile but will not run. If a native application doesn’t
have a method of this format, the application cannot link or run.

Deploying native Win32 applications, DLLs and libraries

When you deploy your native Win32 application, you must include the
DLLs the program requires. Visual Cafe comes with the standard DLLs you
need to run your Java programs. The redistributable Visual Cafe DLLs are
in the VisualCafe\Redist folder.

In addition to Visual Cafe’s standard DLLs, you need any DLLs you created
for your program. To create a program that uses your custom DLL, you
need to provide the class files, the library file (which is created when the
DLL is created), and the DLL. The class files must be on the classpath and
the library should be specified in the compiler options for the project. For
11-5

Chapter 11: Creating Native Win32 Java Applications
more information, see “Registering DLLs using SNJREG” on page 11-19 and
“Setting compiler options” on page 5-57.

You need to register any dynamically loaded DLLs on the computer where
the executable will run or the DLL is used. To do so, you can use the
SNJREG tool. See “Registering DLLs using SNJREG” on page 11-19 for more
information.

In order to launch a Java Win32 application on a machine that doesn’t have
Visual Cafe installed, you’ll need to run snjrt20.exe , which is in the
VisualCafe\Bin folder. This will correctly deploy your properties files
and any other files from Visual Cafe that your application needs to run.
When deploying your program, you can include the snjrt20.exe file for
redistribution. If you’re debugging on the target machine, you’ll want to
use snjrt20d.exe . The only difference between snjrt20d.exe and
snjrt20.exe is that snjrt20d.exe contains debug information as
well.

Note: You only need snjrmiregistry.exe if you have a remote
method invocation (RMI) executable that is like one of the samples, which
does not start the naming server itself (the other RMI sample does not
require snjrmiregistry.exe).

Debugging native programs

In Visual Cafe, you can debug native Win32 applications and DLLs, just as
you would debug bytecode programs (if you have the Visual Cafe
Professional Edition or Visual Cafe Database Edition). For DLLs, you need
to specify the calling program you want to use to run and debug your DLL.
See “Creating native executables and DLLs” on page 11-2 for more
information.

Note the following differences between debugging native and bytecode
programs:

◆ The Calls and Threads windows are different for native and bytecode
programs.

◆ When you’re debugging native Win32 code while incremental
debugging is enabled, you can add new methods, while with bytecode
11-6

Setting project options for native programs
you cannot. (For more information, see “Using incremental debugging”
on page 6-40.)

◆ You cannot perform remote debugging with native programs.

Setting project options for native programs

When you create a native Win32 Java executable or DLL, you need to set
the project options so Visual Cafe recognizes that you’re developing native
Win32 Java applications. You also need to set options to tell Visual Cafe to
debug a native Win32 Java application.

This section provides information on setting project options for building
native applications. For information on general project options, see
Chapter 3, “Working with Projects.”

Specifying the name of a native application or DLL

Visual Cafe provides a default file name of untitled to executable and
DLL files. The default file name is untitled.exe or untitled.dll .
You can change the name from the default by performing the following
steps.

To specify the name of a native executable or library:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.
11-7

Chapter 11: Creating Native Win32 Java Applications
3 In the Project Options dialog box, click the Project tab.

4 Set the Project Type field to Win32 Application or Win32 Dynamic Link
Library.

5 If you’ve chosen a DLL project type, enter the library file name in
the Library Name field.

If you’ve chosen a Win32 application project type, enter the
executable file name in the Application Name field.

The application name is by default the project name, appended with
the .exe extension.

The library name is by default the project name, appended with the
.dll extension.
11-8

Setting project options for native programs
The import library name is the name of the import library file that
gets created along with your DLL. It is by default the project name,
appended with the .lib extension.

6 Click OK.

The change takes effect the next time you run your project.

Specifying the working directories for a native program

If needed, you can specify the location of a native application or the calling
program used to run a native DLL. For example, you need to specify a
working directory if the executable is not in the same directory you want to
run it from.

To specify the working directory for a native program

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 In the Project Options dialog box, click the Project tab.

4 While Win32 Application or Dynamic Link Library is the Project Type,
type the working directory you want to run the executable from.

5 Click OK.

The change takes effect the next time you run your project.

Specifying a program for running and debugging a DLL

Because DLLs are called by an executable file to run, you need to specify
the name and path of the executable file so Visual Cafe can run the DLLs
for testing or debugging.

To specify an executable file for running or debugging a DLL:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 In the Project Options dialog box, click the Project tab.

4 Set the Project Type field to Win32 Dynamic Link Library.

5 Type the name of the executable in the Calling Program field.
11-9

Chapter 11: Creating Native Win32 Java Applications
Note: In the Calling Program field, you enter the name and fully
qualified path to the executable. If you do not specify a fully
qualified path, Visual Cafe looks in the project directory, then
through the directories in your Windows PATH environment
variable.

6 Click OK.

The change takes effect the next time you debug the DLL.

When the calling program tries to load the DLL, it looks for the DLL in the
following order:

1 The directory from which the application loaded. This is the
project folder or, if you specified a full path, the folder where the
program resides.

2 The current working directory, if it’s different from the directory
from which the application loaded.

3 For Windows 95 and 98, the Windows system directory. For
Windows NT, the 32-bit Windows system directory, then the 16-bit
Windows system directory.

4 The Windows directory.

5 The directories that are listed in the Windows PATH environment
variable.

Specifying a class or package to be exported

When you build DLLs you need to tell Visual Cafe which classes or
packages can be used by calling programs.

This option specifies the packages or classes that you want a DLL or native
application to make available to a native application that uses it. The
default is to export all packages and classes. This option is only applicable
to native, Win32 programs.

For example, you might not want to export some packages and classes for
these reasons:

◆ You want to hide functions from use.

◆ You can reduce the size of a DLL by not exporting everything. The
more exports you have, the larger the exports table, and the larger the
image. The smaller the image, the faster it can be loaded.
11-10

Setting project options for native programs
To specify a class or package to be exported:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Compiler tab.

4 Set the Compiler Category to Exports (Win32 only).

A list of classes and packages appears. This is the same list as the one
that appears in the Packages view of the Project window.

5 Click on the classes or packages you want to make available to
other projects.
11-11

Chapter 11: Creating Native Win32 Java Applications
A dimmed, selected box for a package means that not all classes are
selected for that package.

6 Click OK.

The changes take effect the next time you build your project.

Specifying advanced Win32 compiler options

Visual Cafe provides you with additional options that allow you control
aspects of how Visual Cafe compiles files.

To specify advanced native compiler options:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.
11-12

Setting project options for native programs
3 In the Project Options dialog box, click the Compiler tab.

4 Set the Compiler Category to Advanced.

5 Select the checkboxes of the Win32 settings you want to select.
There are three options:

Option Description

GUI application Suppresses the console window. By default
this option is disabled.

Use performance profiling Attributes the code with profiling calls so
that the executable can generate profiling
information. By default this option is not
selected.
11-13

Chapter 11: Creating Native Win32 Java Applications
6 Click OK.

The change takes effect the next time you build your project.

Including library files to link into your native program

In order to build the executable file and the associated DLL files, Visual
Cafe needs to know the names of the import library files for the associated
DLLs.

You can specify library files (.lib) that are linked into a native application
or DLL before the default library, which is included automatically by the
compiler. The libraries are specified in the order you want them to be
linked. The compiler links them into your source code when you compile
your native application or DLL. Visual Cafe can automatically locate
libraries for you if they are in your library search path. This option is only
applicable to native Win32 programs.

To specify libraries to link into your source:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Compiler tab.

P6 Pentium code generation Generate P6 Pentium code. The default
setting is to generate P5 Pentium code.

Option Description
11-14

Setting project options for native programs
4 In the Compiler Category drop-down list, choose Libraries (Win32
only).

5 Add libraries to the list.

❖ To add a library to the list, select the blank entry (marked by an
empty box) at the bottom of the list and type the library name,
including the full path. Or click the New button (located above
the text box), then select a library by clicking the Browse (…)
button that displays in the field. You can also use the New
button to insert a new entry above the selected entry.

❖ To change the link order, select a library and move it with the
Up Arrow and Down Arrow buttons.

❖ To delete a library from the list, select the library and click the
Delete button.
11-15

Chapter 11: Creating Native Win32 Java Applications
6 Click OK.

The change takes effect the next time you run your project.

Making a library file available to a project

Because a library file may be in a different directory than the main project,
you can specify the directory in which the library files you want to use are
located. If you’ve already specified all the library files you’re including in a
project, you don’t need to specify a directory.

To set the directory:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.
11-16

Setting project options for native programs
3 In the Project Options dialog box, click the Directories tab.

4 Set the Show directories for field to Library files.

5 Select a directory from the list of available directories or add the
directory where the library files are located.

6 Click OK.

The change takes effect the next time you run your project.
11-17

Chapter 11: Creating Native Win32 Java Applications
Specifying library file search paths

If a Win32 native application or DLL uses libraries, you need to make sure
Visual Cafe can find them. To do this, you can specify the search paths for
libraries.

To specify library file search paths:

1 Activate the Project window of the project you want to work with.

2 From the Project menu, choose Options.

The Project Options dialog box appears.

3 Click the Directories tab.

4 In the Show directories for field, choose Library files.

A list of folders (directories) that can contain library files appears. The
order affects the search order: the topmost folder is the first to be
searched. The default is to search folders specified for the Windows
LIB environment variable; these folders do not appear in the list and
are last in the search order.

5 Modify the list as needed:

❖ To change the order in which folders are searched, select a
folder and move it with the Up Arrow and Down Arrow
buttons.

❖ To delete a folder from the list, select the directory and click the
Delete button.

❖ To add a folder to the list, select the blank entry (marked by an
empty box) at the bottom of the list and type the folder name,
including the full path. Or click the New button (located above
the text box), then select a folder by clicking the Browse (…)
button that displays in the field. You can also use the New
button to insert a new entry above the selected entry.

6 Click OK.

The changes take effect the next time you compile.

Using native command-line tools

There are a number of command-line tools that you can use with your
native programs. These tools allow you to register packages in DLLs, link
11-18

Using native command-line tools
object files to executables, display debugging information for files, print
version information, and more.

Here are the topics covered in this section:

◆ Registering DLLs using SNJREG

◆ Using OPTLINK and SMAKE with Java programs

◆ Displaying the contents of binary files using OPTDUMP

◆ Displaying the component version using Cafever

◆ Converting coff object files to omf using coff2omf

Registering DLLs using SNJREG

Unlike bytecode Java applications, native Win32 Java applications can’t use
the class path to find classes and packages. Instead, the Windows PATH is
searched to locate classes and packages in DLLs. Classes that are
dynamically loaded must have their names stored in the Symantec registry.
The native classes and packages Symantec provides with Visual Cafe are
already registered when Visual Cafe is installed. Some packages are already
stored in the registry.

If you create a DLL whose classes or packages are not stored in the
registry, the packages or classes in the DLL will not be found by your
program and you’ll receive an error message. SNJREG allows you to enter
the package or class name and which .dll or .exe files contain the
package or class.

SNJREG has the following options:

Option Description

-class DLLs register individual classes, not packages.

Using -class will erase any previous DLL
references assigned to a class that’s already
registered.

-noprompt Disables prompting the user before making
changes to existing entries

-nowarn Turns off all warnings
11-19

Chapter 11: Creating Native Win32 Java Applications
To register a package in a DLL file using SNJREG:

1 Open a DOS window.

2 Change to the directory where the DLL files are located.

3 Enter the following:

SNJREG [options] file1.dll file2.dll file3.dll

where options can be any of the parameters in the previous table and
file1.dll , file2.dll , and file3.dll are the names of the DLL files
that contain the classes or packages that you want to register. You
may specify as many DLL files as you want, delimited by a space. If
the DLL files are not in the current directory, specify the DLL name by
using a full path.

Using OPTLINK and SMAKE with Java programs

OPTLINK is a tool for linking object files into executables. The Java
compiler provided with Visual Cafe compiles and links native applications
for you automatically. You need to use OPTLINK only if you need more
flexibility while linking your programs.

SMAKE is a make tool for command-line users. It’s recommended that you
instead use Visual Cafe projects, which are much easier to use. Only very
complicated programs, such as those that include multiple languages,
might require the use of makefiles.

Most Java programmers don’t need to use OPTLINK and SMAKE to create
native Java programs with Visual Cafe.

Keep in mind that while OPTLINK and SMAKE run under both MS-DOS
and Windows 95, 98, and NT, and while OPTLINK can link both 16-bit and
32-bit executables, native Java applications are 32-bit Windows
applications that will run only on Windows 95, 98, or NT.

For more information on using OPTLINK and SMAKE, see the Visual Cafe
Online Help.

-verbose Reports all registrations made

-reg file.reg Creates a registry file, where file.reg is the
name you give the new registry file

Option Description
11-20

Using native command-line tools
Displaying the contents of binary files using OPTDUMP

OPTDUMP displays the contents of .obj (both .omf and .coff), .lib ,
.exe , and .dll files. Any debug information in these files is also displayed.
Any files of unknown type are binary dumped.

The OPTDUMP command has the following format:

OPTDUMP [options] infile [outfile]

Here are the options you can set for this command:

Displaying the component version using Cafever

Cafever is a command-line utility that prints version information for
certain components in Visual Cafe. It reads a text file Cafever.dat to
determine which components to report version information for. This
command should be invoked from the VisualCafe\Bin folder.

Here’s the format of the Cafever command:

C:\visualcafe\bin > cafever [component_name]

Converting coff object files to omf using coff2omf

The coff2omf utility converts coff object (.obj) files to .omf format.
Visual Cafe uses omf for the format of object files. Some other vendors use
.coff as their format for .obj files.

Option Description

/B [SeekOffset[,length]] Force binary dump

/C Disable CodeView display

/N No logo

/P Enable PharLap #RVAs

/H Disable .exe header display

/V Verbose PE object display
11-21

Chapter 11: Creating Native Win32 Java Applications
Here’s the format of the coff2omf command:

coff2omf filenames.obj

It converts the file(s) in place. The .obj extension is optional.

Working with samples of native applications

To illustrate how to create native Win32 Java applications, Symantec has
provided several sample applications. These simple applications
demonstrate:

◆ how to create an .exe file

◆ how to create an .exe file and DLLs

◆ registering a DLL

◆ working with the RMI register

◆ resource binding

◆ working with C code and JNI

The samples are located in the
Samples\Symantec\Tutorials\Win32 folder. The following
examples use the *.java files found in the sample called Exe .

Note: If you use any of the samples, copy them to a new folder before
making any changes to the code or the project options.

Example: Creating an executable file

Creating a native Win32 Java application is very similar to creating a
bytecode application. The example below builds a simple Win32
application that prints the word Hello .

To create a Win32 executable file:

1 Create a new project by choosing New project from the File menu
and selecting Win32 console application.
11-22

Working with samples of native applications
2 Create a source file called Main.java that contains the following
code:

public class Main

{

public static void main(String args[])

{

Hello hi = new Hello();

hi.printHello();

}

}

3 Add a second source file called Hello.java with the following
code:

public class Hello

{

public void printHello()

{

System.out.println("Hello");

}

}

4 Delete the file SimplCon.java.

5 From the Project menu, choose Options. In the Project Options
dialog box, type Main in the Main Class field, and type
simple.exe in the Application Name field.

6 Compile and execute the application by choosing Execute from the
Project menu.

7 Save the project to new folder called Simple .

When you compile a native Win32 executable, the .java files are
compiled into both class files and object files. Next, the object files are
linked together to create an .exe file.

Example: Creating an executable that uses a DLL

Let’s take this example further by building an executable and a DLL file.
The two files Hello.java and Main.java stay the same.
11-23

Chapter 11: Creating Native Win32 Java Applications
To create an executable and a DLL file:

1 Save the Simple project to a new name and folder, both called
Simple3 , and remove all files with the name Hello from the
Simple3 folder.

2 Create a project for a DLL by choosing New Project from the File
menu. Select Win32 Dynamic Link Library as the project type.

3 Add Hello.java from the Simple folder to the project,
and delete SimplDLL.java .

Note: If you were creating a DLL project from scratch, you would
not delete the SimplDLL.java file, but use it as a template.

4 Save the project to a new folder called Simple2 .

5 Set the project options for the DLL by choosing Options from the
Project menu and using the Project Options dialog box to select
Simple3.exe as the calling program, Hello.dll as Library Name,
and Hello.lib as Import Library name. See “Setting project options
for native programs” on page 11-7 for more information.

6 Make the Hello class exportable. In the Compiler tab of the Project
Options dialog box, select Exports, and then add the path and file
name of the class you want to export.

See “Specifying a class or package to be exported” on page 11-10 for
more information.

7 Build the project to generate Hello.lib and Hello.DLL .

After creating the DLL, you need to add the Simple2 project as a
subproject to the main project, Simple3 .

To add the DLL to the Simple3 project:

1 Create a new Win32 console application project.

2 Delete all files from the project and add Main.java .

3 From the Project menu, choose Options. In the Project Options
dialog box, type Main in the main class field, and type
simple.exe in the Application Name field.

4 From the Insert menu, choose Files into Project. Click the Files of Type
drop-down list box, and select Project Files (*.vep).

5 Select Simple2.vep and click Add.

6 Click OK to add the .vep file to the project.

7 Save the project as Simple3 in a new folder called Simple3 .
11-24

Working with samples of native applications
8 Make Hello.lib a recognized library file. In the Compiler tab of
the Project Options dialog box, select Libraries, and then add the
path and file name of the specified DLL.

See “Including library files to link into your native program” on
page 11-14 for more information.

9 Build the Simple3 project and execute.

What happens in this example is similar to building an .exe with no DLL
file. The major differences are:

◆ More project options need to be set

◆ The build order of the subproject and project must be considered
when a DLL file is linked with an .exe file

◆ .lib files are linked to the .exe instead of linking multiple object files
to form an .exe .
11-25

C H A P T E R 12
Using Version Control
with Visual Cafe

You can now easily integrate your version control system with Visual Cafe
Professional or Database Editions. You can use third-party version control
software to help you manage your programming files by keeping versions
safe from unauthorized changes and controlling how many people can
work on a file at one time.

About version control

You can use version control system (VCS) software that integrates into the
Visual Cafe environment. Visual Cafe supports two interfaces to version
control systems:

◆ The Visual Cafe Version Control interface lets vendors create a plug-
in that integrates their version control system into Visual Cafe.

◆ The Microsoft Source Code Control (SCC) interface is supported in
Visual Cafe. This allows Visual Cafe to work with most version control
software that uses the SCC interface.

When you integrate Visual Cafe with your version control system, you can
then access a number of version control tasks directly from within the

12-1

Chapter 12: Using Version Control with Visual Cafe
Visual Cafe environment. All commands are accessed from the Tools
menu’s Version Control submenu, as shown here:

The list of items you see in the Version Control submenu depends on what
features your version control system supports; you’ll see fairly consistent
options when you’re using version control programs that use the SCC
interface; they may vary more when you’re using other version control
programs.

Installing version control systems

You can install your version control system in the normal manner, making
sure you install the software for the interface you want to use, either the
Visual Cafe Version Control interface or the SCC interface. See “Configuring
version control” on page 12-5 for information.

Important: When you install your version control system, you might have
different install options for the SCC interface and the Visual Cafe Version
Control interface. If you want to use the SCC interface, you should choose
that version control install option (which might be listed as Microsoft
Developer Studio support) and install the Visual Cafe SCC Bridge. If you want
to use the Visual Cafe Version Control interface, choose that version control
install option, which might be listed as a Visual Cafe install option.
12-2

About version control
Some vendors that have implemented the Visual Cafe Version Control
interface are:

◆ StarBase Versions

◆ MKS Source Integrity

Visual Cafe should integrate with version control software that uses the
SCC interface. The following software has been tested to work with Visual
Cafe:

◆ Intersolv PVCS Version Manager version 5.3

◆ Microsoft Visual SourceSafe (VSS) versions 4.0 and 5.0

◆ StarBase Versions version 2.0

◆ MKS Source Integrity version 7.3

◆ Rational ClearCase version 3.2

In Visual Cafe, it’s possible to open more than one project that uses the
same SCC version control provider, or projects that use different SCC
version control providers.

Enabling version control for a project

You enable version control software on a per-project basis. If you’ve
properly installed version control software on your computer, you’ll be
able to select it in Visual Cafe’s project options. Version control systems
that use the SCC interface are prefaced with the words “SCC Provider” in
the Project Options dialog box.

Visual Cafe’s integration with version control systems is designed to be
flexible. While using version control within Visual Cafe, you can open
several projects at once and:

◆ use the same version control system for different projects

◆ use different version control systems for different projects

◆ use version control with some projects and not others
12-3

Chapter 12: Using Version Control with Visual Cafe
Managing projects using the SCC interface

You can add the Visual Cafe project file (.vep , not .vpj , .ve2 , or .cdb)
and any file in the project, including Java and HTML files, to the version
control system.

Before you make changes to your project file (such as adding files to or
removing files from the project), you should first check it out of the version
control system (see “Checking files in and out” on page 12-13). If the
project file on your local computer is different from the project file in the
version control system and you attempt to check out the project file or get
the latest version of it, Visual Cafe does a project merge to update your
local version of the project. You are prompted before changes are made to
your local copy. If you do not accept changes, you cannot check out the
project file or get the latest version.

Visual Cafe synchronizes with the version control system after any
significant version control operation. See “Refreshing file status” on
page 12-18 for details.

Note: If you want to move a Visual Cafe project and the files it contains to
another location, make sure no files are checked out before moving the
files (see “Checking files in and out” on page 12-13).

Using version control

You can access version control commands by choosing Version Control from
the Tools menu, then choosing various items from the submenu. What
specific items are visible in the submenu depends on what features your
version control system supports.

You can perform a variety of tasks with version control while within the
Visual Cafe environment. These tasks include:

◆ Configuring version control

◆ Setting version control options

◆ Adding and removing files for version control

◆ Checking files in and out of version control
12-4

Using version control
◆ Getting the latest version of a file

◆ Refreshing file status in version control

◆ Showing the version control history of files

◆ Showing the differences between files in version control

◆ Showing version control properties for files

◆ Running the version control system

Each of these tasks is discussed below.

Configuring version control

In order to use version control in conjunction with Visual Cafe, you need
to configure Visual Cafe for your specific version control system or systems
that you have installed.

To set up version control for use in the Visual Cafe environment:

1 Activate the Project window of the project you want to work with.

Note: After creating a new project, you should save the project to
the location where you want it before choosing a version control
system.

2 Choose Options from the Project menu.
12-5

Chapter 12: Using Version Control with Visual Cafe
3 In the Project Options dialog box, click the Version Control tab.

4 Choose the version control software you want to use.

Remember that you must properly install the software before you can
use it with Visual Cafe. If you want to use the SCC interface, choose a
version control system that is prefixed with “SCC Provider.” For
example, you might see the line SCC Provider: StarBase Versions;
whereas, if StarBase does not use the SCC interface, the line would
show StarBase Versions.

5 Click OK.

The change takes effect immediately.
12-6

Using version control
If you’re using the SCC interface, the Version Control Options dialog box
appears. The version control system’s provider may prompt you to create a
new project or open an existing project, and then the Add to Version
Control dialog box appears.

Tip: If you’re using the SCC interface, choose Version Control from the Tools
menu to view the version control menu items available to you. For
example, you can set version control options and check files in and out
(see “Checking files in and out” on page 12-13).

Note: If you enable a version control system or switch version control
systems for a project, the files are checked into the new version control
system as new files.

Setting version control options

If you’re using the SCC interface, you can set version control options for
the project after you enable version control.

To set general version control options:

1 Activate the Project window of the project you want to work with.

2 From the Tools menu, choose Version Control, and then choose
Options.
12-7

Chapter 12: Using Version Control with Visual Cafe
The Version Control Options dialog box appears.

Note: When you first establish the connection between Visual Cafe
and your version control software, the Version Control Options
dialog box will automatically appear.

3 In the Version Control Options dialog box, select the options you
want:

Select... To specify this...

Prompt to add files
to VCS when new
files are inserted

If selected, when you add one or more new files to a
project you’re given the ability to add files (that are new to
the project) to the version control system. If deselected,
new files are not added to version control. (If you don’t
select this option, you can later add the files to the version
control system by choosing Version Control from the Tools
and then Add from the submenu). This option is selected
by default.
12-8

Using version control
Prompt to remove
files from VCS
when files are
removed

If selected, when you remove one or more files from a
project you’re asked if you want to remove them from the
version control system. If deselected, the files are not
removed. (If you don’t select this option, you can later
remove the files from the version control system by
choosing Version Control from the Tools menu, and then
Remove from the submenu.) This option is selected by
default.

Prompt to rename
VCS files when
files are renamed

If selected, when you rename a file in a project you’re
asked if you want to rename it in the version control
system. Alternatively, if your version control system does
not support file renaming, you’re asked if you want to add
the file to the version control system under the new name,
then if you want to remove the file under the old name. In
this case, you lose some history information about this file.

If deselected, you are not prompted and the file is not
renamed or removed from the version control system. Be
aware that this can create complications by creating a
discrepancy between your local files and the files in the
version control system. (If you don’t select this option,
you’ll have to go into the version control system to rename
files from there.) This option is selected by default.

Prompt to check
out files when
read-only file is
edited

If selected, when you try to edit a read-only file in version
control in a project you’re asked if you want to check it
out of the version control system. If deselected, you are
not prompted and the file is not checked out. (If you don’t
select this option, you can later choose Version Control from
the Tools menu, and then Checkout from the submenu.)
This option is selected by default.

Prompt to get files
when opening the
project

If selected, when you open a project you’re asked if you
want to get the latest version of files from the version
control system. If deselected, you do not get the latest
versions. (If you don’t select this option, you can later
choose Version Control from the Tools menu, and then Get
from the submenu.) This option is selected by default.

Prompt to check in
files when closing
the project

If selected, when you close a project you are asked if you
want to first check in files that you had checked out of the
version control system. If deselected, the files are not
checked in. (If you don’t select this option, you can later
go into the version control system and check in the files
there.) This option is selected by default.

Select... To specify this...
12-9

Chapter 12: Using Version Control with Visual Cafe
4 Click OK.

The change takes effect immediately.

Adding and removing files

If you’re using the SCC interface, within Visual Cafe you can add files to or
remove files from the version control system. When you first choose a
version control system for a project, you’re asked what files you want to
add. In addition, depending on your version control options, you may also
be prompted to add or remove files at other times. See “Setting version
control options” on page 12-7 for more information.

To add one or more files to version control:

1 Activate the project you want to work with.

2 Choose Version Control from the Tools menu, then Add to Version
Control from the submenu.

Enable background
updates

If selected, your version control system performs
background status updates. If deselected, there are no
background updates. How background status updates are
implemented depends on your version control system.
This option is selected by default.

Select... To specify this...
12-10

Using version control
The Add to Version Control dialog box appears.

(This dialog box can also appear at other times, such as when you
choose a version control system for a project.)

The dialog box lists the files in your project that have not already
been added to the version control system by you or another user; if
the project file (.vep) has not been added, it is also listed.

Note: The list of items you see in the Tools menu’s Version Control
submenu depends on what features your version control system
supports.

3 Select the files you want to add:

❖ To select individual files, click a file so the checkbox is
selected.

❖ To deselect individual files, click a file so the checkbox is
deselected.

❖ To select all files in the list, click Select All. To deselect all files,
click Deselect All.
12-11

Chapter 12: Using Version Control with Visual Cafe
❖ To add files and check them out, select Keep Checked Out. To
add files without checking them out, deselect the option.

❖ To add comments to selected files, type in the Comments field.
For some version control systems, you can also add or modify
comments in the version control system’s dialog boxes.

❖ To set other options in a version control system dialog box,
click Advanced (if available). The dialog box is implemented by
your version control system, not Visual Cafe.

4 Click OK.

The selected files are added to version control.

Consult your version control software’s documentation for more
information about what happens next.

To remove one or more files from version control:

1 Activate the project you want to work with.

2 Choose Version Control from the Tools menu, then Remove from
Version Control from the submenu.

The Remove from Version Control dialog box appears.

(This dialog box can also appear at other times, such as when you
rename a file but the version control system does not support a
rename operation.)

The dialog box lists the files in your project that have already been
added to the version control system by you or another user; if the
project file (.vep) has been added, it is also listed.

Note: The list of items you see in the Tools menu’s Version Control
submenu depends on what features your version control system
supports.

3 Select the files you want to remove:

❖ To select individual files, click a file so the checkbox is
selected.

❖ To deselect individual files, click a file so the checkbox is
deselected.

❖ To select all files in the list, click Select All. To deselect all files,
click Deselect All.

❖ To set other options in a version control system dialog box,
click Advanced (if available). The dialog box is implemented by
your version control system, not Visual Cafe.
12-12

Using version control
4 Click OK.

The selected files are removed from version control.

Consult your version control software’s documentation for more
information about what happens next.

Checking files in and out

If you’re using the SCC interface, within Visual Cafe you can check files in
and out of a version control system. You can also undo a file checkout so
the file is not modified and you no longer have it checked out. Depending
on your version control options, you may also be prompted to check files
in or out at other times. See “Setting version control options” on page 12-7
for more information.

To check out one or more files in a project:

1 Activate the project you want to work with.

2 Choose Version Control from the Tools menu, then Check Out from
the submenu.

The Check Out File(s) dialog box appears. It lists the files in your
project that aren’t checked out; if the project file (.vep) is not
checked out, it is also listed.

Note: The list of items you see in the Tools menu’s Version Control
submenu depends on what features your version control system
supports.

3 Select the files you want to check out:

❖ To select individual files, click a file so the checkbox is
selected.

❖ To deselect individual files, click a file so the checkbox is
deselected.

❖ To select all files in the list, click Select All. To deselect all files,
click Deselect All.

❖ To set other options in a version control system dialog box,
click Advanced (if available). The dialog box is implemented by
your version control system, not Visual Cafe.

4 Click OK.

The selected files are checked out.
12-13

Chapter 12: Using Version Control with Visual Cafe
Consult your version control software’s documentation for more
information about what happens next.

To check in one or more files:

1 Activate the project you want to work with.

2 Choose Version Control from the Tools menu, then Check In from the
submenu.

The Check Out File(s) dialog box appears. It lists the files in your
project that are checked out; if the project file (.vep) is checked out,
it is also listed.

Note: The list of items you see in the Tools menu’s Version Control
submenu depends on what features your version control system
supports.

3 Select the files you want to check in:

❖ To select individual files, click a file so the checkbox is
selected. To deselect individual files, click a file so the
checkbox is deselected.

❖ To select all files in the list, click Select All. To deselect all files,
click Deselect All.

❖ To check in file changes but keep files checked out, select Keep
Checked Out. To just check in files, deselect the option.

❖ To add comments to selected files, type in the Comments field.
For some version control systems, you can also add or modify
comments in the version control system’s dialog boxes.

❖ To set other options in a version control system dialog box,
click Advanced (if available). The dialog box is implemented by
your version control system, not Visual Cafe.

❖ To examine differences between one of your files and a file in
the version control system, click Differences. The dialog box is
implemented by your version control system, not Visual Cafe.

4 Click OK.

The selected files are checked in.

Consult your version control software’s documentation for more
information about what happens next.

To undo one or more file checkouts:

1 Activate the project you want to work with.
12-14

Using version control
2 Choose Version Control from the Tools menu, then Undo Checkout
from the submenu.

The Undo Checkout dialog box appears. It lists the files in your
project that are checked out; if you checked in the project file
(.vep), it is also listed.

Note: The list of items you see in the Tools menu’s Version Control
submenu depends on what features your version control system
supports.

3 Select the files for which you want to undo the checkout:

❖ To select individual files, click a file so the checkbox is
selected. To deselect individual files, click a file so the
checkbox is deselected.

❖ To select all files in the list, click Select All. To deselect all files,
click Deselect All.

❖ To specify other options in a version control system dialog box,
click Advanced (if available). The dialog box is implemented by
your version control system, not Visual Cafe.

4 Click OK.

The selected files are no longer checked out, and they behave like
checked-in files.

Working with the Visual Cafe project file and version control

You can now merge project file changes directly into your version control
system while working in Visual Cafe, rather than having to exit Visual Cafe
and check out your files from version control.

The Visual Cafe project file (*.vep) is a special case, since it’s not a text
file like most files under version control, such as *.java , *.html , and so
on, and also because it is locked by Visual Cafe. However, unlike most
binary file types, merging two project files can make sense.

After the project file has been checked in, it may be made read-only by the
version control system. When it’s checked out or when the latest version of
the project file is retrieved, the version of the .vep in memory and the
newly retrieved version are merged. In some cases, the project file may be
automatically saved to the disk so that the options are synchronized.

Keep the following precautions in mind when you’re working with a
project file in a version control system:
12-15

Chapter 12: Using Version Control with Visual Cafe
◆ You should be very careful when replacing an existing, local version of
the project file. This may cause new files to be added to and/or
existing files to be removed from the project. The options of the new
project file override the options of the existing project file. This is the
expected behavior, but it can be confusing.

◆ You should also be very careful when checking in a project file; it may
be made read-only, and this can be a source of confusing warnings for
you.

◆ In general, it’s a good idea to handle the project file independently of
the other source files.

You shouldn’t check in the .vpj and the .ve2 files, which contain
information that’s generated by Visual Cafe. These files can be recreated
automatically from the source files. If you try to check in these files they
could become out of sync with the user’s local changes.

It’s possible to move a Visual Cafe project to another location after some of
its files have been put under an SCC version control provider. However, it’s
recommended that you check in or un-check-out your files before moving
them, because some version control systems will believe that you have files
still checked out at the old location.

About renaming files in conjunction with version control

The SCC provider may or may not handle the rename function. If they
don’t, Visual Cafe will try to add the renamed file as a new file under
version control, and to remove the old file from version control. You can
choose whether or not to perform each of these operations.

If the SCC provider doesn’t support the rename function, then you must be
very careful when renaming files in Visual Cafe if you don’t want to
introduce breaks in the history of a source file. Visual Cafe, unlike most
development environments, allows you to rename a file very easily and
indirectly when renaming a class in the Objects view of the Project
window. You are strongly advised to determine the definitive class or file
name early in the development process, and to add the file to version
control afterwards. If the SCC provider supports the rename function, then
renaming a class shouldn’t be a problem.
12-16

Using version control
Getting the latest version of a file

If you’re using the SCC interface, within Visual Cafe you can get the latest
version of a file in a version control system. Depending on your version
control options, you may also be prompted to get the latest version of files
when opening a project. See “Setting version control options” on page 12-7
for more information.

To retrieve the latest version of a file:

1 Activate the project you want to work with.

2 Choose Version Control from the Tools menu, then Get Latest Version
from the submenu.

The Get Latest Version dialog box appears. It lists the files in your
project that have been added to the version control system by you or
another user; if the project file (.vep) has been added, it is also
listed.

Note: The list of items you see in the Tools menu’s Version Control
submenu depends on what features your version control system
supports.
12-17

Chapter 12: Using Version Control with Visual Cafe
3 Select the files you want to get the latest version of:

❖ To select individual files, click a file so the checkbox is
selected. To deselect individual files, click a file so the
checkbox is deselected.

❖ To select all files in the list, click Select All. To deselect all files,
click Deselect All.

❖ To specify other options in a version control system dialog box,
click Advanced (if available). The dialog box is implemented by
your version control system, not Visual Cafe.

4 Click OK.

The latest version of the file is retrieved.

Consult your version control software’s documentation for more
information about what happens next.

Refreshing file status

Visual Cafe synchronizes with the version control system after any
significant version control operation (for example, when you use a
command in the Tools menu’s Version Control submenu). In addition, you
can synchronize your Visual Cafe and VCS projects at any time by choosing
Version Control from the Tools menu, then Refresh Status from the submenu.
Visual Cafe prompts you before performing any version control operation
that might affect the Visual Cafe or VCS project. The only operations you
do not receive a prompt for are:

◆ when a VCS project is opened or closed as a result of opening or
closing a Visual Cafe project

◆ file status inquiries

Showing the version control history of files

If you’re using the SCC interface, within Visual Cafe you can obtain the
version control history of files.

To show the version control history of a file:

1 Activate the project you want to work with.

2 Choose Version Control from the Tools menu, then Show History from
the submenu.
12-18

Using version control
The History dialog box appears. It lists the files in your project that
have been added to the version control system by you or another
user; if the project file (.vep) has been added, it is also listed.

Note: The list of items you see in the Tools menu’s Version Control
submenu depends on what features your version control system
supports.

3 Select the files you want to view the history of:

❖ To select or deselect individual files, click a file.

❖ To select or deselect multiple files, CTRL-click the files.

4 Click Show.

A dialog box that was implemented by your version control system
appears.

5 Show the history of other files, if needed, then click Close when
you’re finished.

The files’ version control history is displayed.

Consult your version control software’s documentation for more
information about what happens next.

Showing the differences between files

If you’re using the SCC interface, within Visual Cafe you can show the
differences between files on your local computer and files in a version
control system.

To show differences between files in version control:

1 Activate the project you want to work with.

2 Choose Version Control from the Tools menu, then Show Differences
from the submenu.

The Differences dialog box appears. It lists the files in your project
that have been added to the version control system by you or another
user; if the project file (.vep) has been added, it is also listed.

Note: The list of items you see in the Tools menu’s Version Control
submenu depends on what features your version control system
supports.
12-19

Chapter 12: Using Version Control with Visual Cafe
3 Select the files you want to view the differences of:

❖ To select or deselect individual files, click a file.

❖ To select or deselect multiple files, CTRL-click the files.

4 Click Show.

A dialog box that was implemented by your version control system
appears.

5 Show the differences between other files, if needed, then click
Close when you’re finished.

The files’ differences are displayed.

Consult your version control software’s documentation for more
information about what happens next.

Showing version control properties for files

If you’re using the SCC interface, within Visual Cafe you can show the
properties of files in a version control system.

To show version control properties for a file:

1 Activate the project you want to work with.

2 Choose Version Control from the Tools menu, then VCS Properties
from the submenu, where VCS is the name of the version control
system.

The Properties dialog box appears. It lists the files in your project that
have been added to the version control system by you or another
user; if the project file (.vep) has been added, it is also listed.

Note: The list of items you see in the Tools menu’s Version Control
submenu depends on what features your version control system
supports.

3 Select the files you want to view the properties of:

❖ To select or deselect individual files, click a file.

❖ To select or deselect multiple files, CONTROL-click the files.

4 Click Show.

A dialog box that is implemented by your version control system
appears.
12-20

Using version control
5 Show the properties of other files, if needed, then click Close
when you’re finished.

The files’ version control properties are displayed.

Consult your version control software’s documentation for more
information about what happens next.

Running your version control system

If you’re using the SCC interface, within Visual Cafe you can launch the
main interface to the version control system. This main entry point into the
program is sometimes called the front end.

To launch the version control system:

1 Activate the project you want to work with.

2 Choose Version Control from the Tools menu, then choose the name
of the version control system from the submenu.

The version control application launches.

Note: The list of items you see in the Tools menu’s Version Control
submenu depends on what features your version control system
supports.

Setting the default version control user name

If you’re using the SCC interface, you can set the default version control
user name in Visual Cafe for a number of reasons. For one thing, not all
version control systems prompt for a user name. Also, the default Windows
user name might be undefined (for example, under Windows 95 if you
don’t log in) or different from the version control user name that you use.

To specify the default version control user name:

1 From the Tools menu, choose Environment Options, then click the
General tab.

2 In the Version Control User Name field, type the name you want to
use with your version control system.

3 Click Apply or OK to save the change.

The change takes effect immediately.
12-21

C H A P T E R 13
Localizing Your Java
Programs

After you create a Java program using Visual Cafe, you may at some point
want to distribute it to users who speak a different language than you do.
Visual Cafe helps you with the process of localizing your programs,
providing a list of locales and a tool that simplifies the localization process.
This chapter gives you the information you’ll need to localize your
programs.

About localization

If you want to deploy your applet or application to users who speak a
different language or dialect than the one you’re programming in, you’ll
want to localize your program so that those users can understand it. When
you’re changing your applet or application to be appropriate for a different
country, dialect, or region, you’re localizing your program. Primarily, this
involves the time-intensive task of translating text strings, but it can involve
much more, depending on the culture that you’re localizing to. You may
have to resize user interface elements such as buttons and text fields in
order to accommodate longer or shorter text strings. In addition, you may
have to rearrange components to fit the culture’s sensitivities and
preferences, redo graphics, and translate your program’s documentation.

Visual Cafe assists you in using resource bundles to localize your Java
programs. A resource bundle is a collection of elements that correspond
to a specific geographical or cultural locale. For example, after creating a
Java program, Visual Cafe can search for strings in your file, then replace
them with a reference to a resource bundle. In addition, Visual Cafe can

13-1

Chapter 13: Localizing Your Java Programs
create one or more resource bundles that translators can use to apply
words in different languages for different countries.

For example, this line:

label1.setText("hello");

might be replaced with this line:

label1.setText(resourceBundle.getString("label1_text"));

As a result, a resource bundle is added to the Visual Cafe project. Note that
the default variable (key) names are different when Visual Cafe
automatically localizes auto-generated code and when you use the
Localization tool (see “Localizing individual strings with the Localization
tool” on page 13-6).

At the least, you’ll need to create a resource bundle. After you’ve created a
resource bundle, you’ll need to create and edit locales. Locales can
include a language, country, and variant (which might be a dialect of a
language). The default is the locale configured for your computer, such as
US English. In some cases you might need to create the resource bundle
for your localization team, which then creates and edits locales;
alternatively, you may do the whole localization process yourself.

The translation for a word is searched for in the following order when you
specify a language, country, and variant:

◆ The resource bundle for a language, country, and variant

◆ The resource bundle for the language and country

◆ The resource bundle for the language

◆ The default resource bundle

Here are some sample resource bundles:

◆ French language, France country, and Paris variant:
JFrame1Bundle_fr_FR_Paris.java

◆ French language and France country:
JFrame1Bundle_fr_FR.java

◆ French language: JFrame1Bundle_fr.java

◆ Default: JFrame1Bundle.java

Locale information is provided by two text files, which list the International
Standards Organization (ISO) 639 and 3166 codes. The ISO 639 codes
13-2

Using localization
provide the standard list of languages, and the ISO 3166 codes provide the
standard list of countries.

Visual Cafe can automatically generate two types of resource bundles: a
Java type or a properties type.

A Java type of resource bundle contains a class definition that gets
compiled into the object that is being localized. As a result, it’s faster to use
once the Java program is compiled and used outside the Visual Cafe
environment.

Here’s an example of a Java type of resource bundle called
Applet1Bundle.java :

public class Applet1Bundle extends
java.util.ListResourceBundle

{

public Object[][] getContents()

{

return contents;

}

static final Object[][] contents =

{

{"label1_text", "hello"}

};

}

The property type of resource bundle is a text file, and can be easier to
replace during development if you want to modify the file outside the
Visual Cafe environment. You must use one type for all resource bundles
in a project. If you switch types during development, the necessary
resource bundles are generated.

Here’s an example of a properties type of resource bundle called
Applet1Bundle.properties :

label1_text=hello

Using localization

This section describes the specifics of localizing your Java programs. You’ll
learn about:
13-3

Chapter 13: Localizing Your Java Programs
◆ Localizing a project with the Localization tool (page 13-4)

◆ Localizing individual strings with the Localization tool (page 13-6)

◆ Localizing auto-generated code (page 13-9)

◆ Adding or deleting a locale (page 13-11)

◆ Adding information to the resource bundle for a locale (page 13-13)

◆ Editing a resource bundle (page 13-13)

Read on for information about each of these tasks.

If you proceed in localizing a project by choosing to either localize a
project or localizing individual strings with the Localization tool, Visual
Cafe will automatically localize both the code it generates automatically
and the code that you write yourself.

After you’ve run the Localization tool at least once, or you choose the
Localize Generated Code option in the Project Options dialog box, thereafter
any code you generate will automatically be localized, but code that you’ve
written yourself won’t be localized. You’ll need to localize yourself any
code that you’ve written manually.

Note: After running the Localization tool, if you add an interaction that
uses a string, you need to run the Localization tool again in order for that
string to be localized. For more information about interactions, see
Chapter 9, “Working with Events and Interactions.”

Localizing a project with the Localization tool

Visual Cafe can automatically localize a whole project at once. To localize
code on a per-string basis, see the next section, “Localizing individual
strings with the Localization tool” on page 13-6.

Note: The Localization tool localizes both code that you’ve written yourself
and code that is automatically generated. Auto-generated code is delimited
by //{{INIT_CONTROLS//}} tags. You can also choose to localize only
auto-generated code; for more information, see “Localizing auto-generated
code” on page 13-9.
13-4

Using localization
To localize a project:

1 Open the project you want to localize.

2 From the Tools menu, select Localization, then select Resource Bundle
Strings.

The Localization Options dialog box appears:

3 In the Strings to Localize area, select All (if it’s not already selected).

4 By default, the Resource Bundle Type is set to List. If you want Visual
Cafe to generate the property type of resource bundles, select
Property.

Note: After you’ve finished running the Localization Tool, if you
change the type of resource bundle, Visual Cafe will then start to
generate the new type of resource bundle.

5 Click Generate Resource Bundles.

Visual Cafe localizes the project immediately and continues to
localize strings that Visual Cafe automatically generates.
13-5

Chapter 13: Localizing Your Java Programs
You can view the resource bundles in your project by looking at the
Files view of the Project window:

If you want to localize individual lines of code, see the next section,
“Localizing individual strings with the Localization tool.”

Localizing individual strings with the Localization tool

You can also use the Localization tool to localize code string by string. To
localize a whole project, see the previous section “Localizing a project with
the Localization tool.”

Note: The Localization tool localizes both code that you’ve written yourself
and code that is automatically generated. Auto-generated code is delimited
by //{{INIT_CONTROLS//}} tags. You can also choose to localize only
auto-generated code; for more information, see “Localizing auto-generated
code” on page 13-9.

After completing the Localization
tool, if you’ve selected the list type
of resource bundle, a Java
resource bundle file appears in
your project.

After completing the Localization
tool, if you’ve selected the
property type of resource bundle,
a properties resource bundle file
appears in your project.
13-6

Using localization
By selecting multiple files in the Project window, you can localize your
code string by string in those selected files when using the Localization
tool.

To localize individual code strings with the Localization tool:

1 Open the Project window for desired project. In the Files view of
the Project window, select the file or files that you want to
localize.

2 From the Tools menu, select Localization, and then select Resource
Bundle Strings.

The Localization Options dialog box appears:

3 In the Strings to Localize area, select Specify Strings.

4 By default, the Resource Bundle Type is set to List. If you want Visual
Cafe to generate the property type of resource bundles, select
Property.

5 Click Generate Resource Bundles.
13-7

Chapter 13: Localizing Your Java Programs
The Localization tool appears.

Visual Cafe searches for strings in the file you selected, then displays
the first string and the line of code it was taken from.

6 In the Localization tool, check that the source filename and
resource bundle are correct. If not, click the Browse button to
specify a different source file or resource bundle.

7 For each string, optionally type a variable name for the string in
the Resource Key field and a default string in the Current String field,
then click Convert and Find Next. To skip a string, click Skip and Find
Next.

Note: If you decide to skip a string, Visual Cafe will add a
//@Skip when resource bundling comment automatically.
If you use the Localization tool again, Visual Cafe will skip the
strings it skipped before.

When the entire file is localized, the Current String field displays No
Further Strings Found .

8 To localize other files, click Browse to specify a source file. If
needed, also specify a resource bundle. Then localize the files as
before.

9 When you’re finished using the Localization tool, click Close.

You can view the resource bundles in your project by looking at the
Files view of the Project window.
13-8

Using localization
Localizing auto-generated code

You can choose to have the Localization tool localize only the code that
Visual Cafe automatically generates. Visual Cafe automatically generates
code that appears between //{{INIT_CONTROLS//}} tags. If you
choose to do this, then any code you’ve written yourself won’t be
localized.

Note: If you want to localize code that you’ve written yourself, you can
localize your whole project at once or localize individual files on a per-
string basis. For more information, see “Localizing a project with the
Localization tool” on page 13-4 and “Localizing individual strings with the
Localization tool” on page 13-6.

To localize auto-generated code:

1 Activate the Project window of the project you want to work with.

2 Choose Options from the Project menu.

The Project Options dialog box appears.
13-9

Chapter 13: Localizing Your Java Programs
3 In the dialog box, click the Project tab.

4 Select the Localize Generated Code option to specify that you want
Visual Cafe to automatically localize the code it generates. Or
deselect it if you want to undo localization for automatically
generated code.

Note: If you deselect the Localize Generated Code option after it
was selected, Visual Cafe undoes localization for auto-generated
code. To fully undo localized code you’ll need to also undo
localized strings in manually entered code.

Select this option to set
Visual Cafe to localize
only auto-generated code.

Once you’ve run the
Localization tool, and you
deselect this option,
Visual Cafe undoes the
localization for auto-
generated code.

Select this option to set
Visual Cafe to generate
the property type of
resource bundle. Deselect
it to generate the list type
of resource bundle.
13-10

Using localization
5 Select the Generate Property Files option to specify that you want
Visual Cafe to generate the property type of resource bundles. Or
deselect it generate the Java type of resource bundles.

Tip: You can also choose the type of resource bundle in the
Localization tool.

6 Click OK.

If you selected the Localize Generated Code option, Visual Cafe
localizes code immediately and continues to localize it as you work
on your files.

Adding or deleting a locale

The default value for a resource bundle is the locale configured for your
computer (US English, for example). You can add other locales in separate
resource bundles, or delete locales if you want. Once you’ve added
locales, you can choose to use one in the Visual Cafe environment.

Note: You can only add a locale to a project that has been localized.

To add a locale:

1 Open the project you want to add a locale to.

2 Choose Localization from the Tools menu, then choose Add Locale
from the submenu.

The Add Locale dialog box appears.
13-11

Chapter 13: Localizing Your Java Programs
3 In the dialog box, select the Show Only JDK Supported Locales
option if you want to restrict the languages and countries list in
this way. Otherwise, deselect the option.

4 Choose a language.

The list is derived from the ISO 639 codes.

5 Optionally choose a country.

The list is derived from the ISO 3166 codes.

6 If you did not select the Show Only JDK Supported Locales option,
you can type a variant. For example, you could specify a dialect of
Spanish, such as Mexican.

7 Click Add.

A resource bundle specific to that locale is added to your project. The
locale now appears in the Locales submenu, which you can see when
you choose Localization from the Tools menu.

8 Click Close after you’ve added all the locales you want.

The next time you work with locales, the locale you most recently
added is automatically selected for you.

If you want to add words for a dialect, see “Adding information to the
resource bundle for a locale” on page 13-13.

To delete a locale:

1 In the Project window, select the file for which you want to delete
a locale. Or activate the Form Designer or Source window for the
file.

2 Choose Localization from the Tools menu, then choose Delete Locale
from the submenu.

3 Select one or more locales, then click Delete.

The specified locales are deleted.

To choose a locale to use for a project:

1 Open the project you want to choose a locale for.

2 Choose Localization from the Tools menu, choose Locales, and then
choose a locale from the submenu.

The locale you’ve chosen is now applied to the active project.
13-12

Using localization
Adding information to the resource bundle for a locale

You can add words to a resource bundle from within Visual Cafe. Simply
choose the locale and type in the Form Designer or Property List.

Note: You need to add the locale before you can add information to it.

To add information to the resource bundle for a locale:

1 In the Project window, select the file for which you want to specify
locale-specific information. Or activate the Form Designer or
Source window of the file.

2 Choose Localization from the Tools menu, choose Locales, and then
choose a locale from the submenu.

The most recently added locale is automatically selected for you.

3 Enter one or more words in the Form Designer or Property List.

The value is added to the appropriate resource file in your project.

Editing a resource bundle

You can edit a resource bundle from within Visual Cafe with the Resource
Bundle Editor.

Note: Before you can edit a resource bundle with the editor you must have
already localized the current project, and you need to add a locale before
you can add language- or country-specific information to it.

To edit a resource bundle with the Resource Bundle Editor:

1 In the Project window, select the resource bundle or the form that
includes a resource bundle.

2 Choose Edit Resource Bundle from the Tools menu.
13-13

Chapter 13: Localizing Your Java Programs
The Resource Bundle Editor appears.

The Resource Tag column shows the resource tags in the bundle. The
Default column shows the information in the default resource bundle
file, Applet1Bundle .

3 Edit the resource bundle as needed.

❖ To rearrange columns, drag a column heading to another
location.

❖ To resize a column, drag the border.

The changes take effect immediately.

Converting between native and ASCII characters

If you’re localizing your code and have added a locale that matches the
locale set for your operating system (if you’re working on a non-US English
based system), you can automatically convert native characters to Unicode
characters (ASCII format).

ASCII is a way to represent up to 256 different non-US English characters,
each character being one byte in size. Unicode is a superset of ASCII; it
can represent up to 32,768 characters, each two bytes in size.

A non-US English based system is either a non-US English operating system
(such as British, French, German, or Japanese, for example), or the US
English operating system whose system locale is set to a language other
than US English.

If you’re using a non-US English based system, the Java compiler might not
understand some characters, such as those for Asian or some European
13-14

Using localization
languages. If these native characters appear in your resource bundle’s
source code, you need to convert them to Unicode before compiling.
Visual Cafe can handle this conversion for you; this way you can view
native characters in the Source window and and still compile your code.

For example, if Japanese is the current system locale, and you type a
character native to Japanese, Visual Cafe can automatically convert the
character to a Unicode character (for example, \u3042) in the resource
bundle file when you save and open it. You are then able to compile this
file.

Note: In order for this native to Unicode conversion to work, the resource
bundle’s locale must match the system locale of the computer running
Visual Cafe. For example, if you’re working on a computer with a Japanese
system locale, you can only convert native characters to Unicode for
resource bundle files that also have the locale set to Japanese (such as
Applet1Bundle_ja.java and Applet1Bundle_ja_JP.java).

If you want to add native characters for a non-US English locale file that
doesn’t match your system locale (for example, Korean characters while
your system locale is set to Japanese), you’ll need to convert these native
characters by hand into ASCII to make sure the code compiles correctly.

If you’re inserting resource bundle files that you wrote in native characters
into the project, you must convert them to Unicode before using them in
the Visual Cafe environment.

Note: To ensure that your code compiles correctly, 1) use the Symantec
Java compiler (provided and automatically in use in Visual Cafe) to
compile your native character files, and 2) do not compile files with native
characters on non-Win32 operating systems.

To convert native characters to ASCII:

1 Use the Visual Cafe localization features to create a resource
bundle that matches the locale used by the operating system on
your computer. Make sure this locale is the active locale in the
Visual Cafe environment.
13-15

Chapter 13: Localizing Your Java Programs
2 Choose Environment Options from the Tools menu, then click the
General tab.

3 Select the Native2ASCII Auto conversion options you want:

❖ To have Unicode characters converted to native characters
when you open a file (so that you can see the native characters
in the Source window), select Convert ASCII to native when
opening file. If you don’t select this option, the Unicode value (in
the form of \u XXXX) appears when you open the file in the
Source window.

❖ To convert native characters to ASCII before you save a file,
thus making it possible for the file to be compiled, select
Convert native to ASCII when saving file. If you don’t select this
option, you won’t be able to compile your file.
13-16

Using localization
Note: In most cases, you’ll want to select both Convert ASCII to
native when opening file and Convert native to ASCII when saving file.

4 Click Apply or OK to save your changes.

If the resource bundle file matches your system locale, the changes
take effect immediately.
13-17

IV

A p p e n d i x e s

A P P E N D I X A
Updating Visual Cafe with
LiveUpdate

LiveUpdate is a Symantec technology that allows you to upgrade selected
Symantec products online. LiveUpdate keeps track of packages that are
downloaded to your computer so that it can determine the appropriate
upgrade for your software.

About LiveUpdate

LiveUpdate enables you to update your version of Visual Cafe. It
communicates with the Symantec Update Center using TCP/IP in either of
two ways: over a network connection to the Internet, such as your office
workstation uses, or through a connection with your online service or
Internet service provider. LiveUpdate can communicate using either FTP or
HTTP.

If you don’t have access to the Internet or your access is restricted by
firewalls, you can access LiveUpdate through a modem connection to a
Bulletin Board System (BBS).

When you install Visual Cafe, LiveUpdate is also installed. When you
register your copy of Visual Cafe through online registration, LiveUpdate’s
services are enabled for Visual Cafe. LiveUpdate is then available from
Visual Cafe’s Help menu.

Installation also adds a LiveUpdate program icon to your Windows Control
Panel. You can use this icon to help configure your LiveUpdate settings, to
A-1

Appendix A: Updating Visual Cafe with LiveUpdate
troubleshoot connection problems, or to update your copy of the
LiveUpdate product itself.

To connect to the Symantec Update center:

1 Choose LiveUpdate from the Help menu.

If you haven’t already registered at the Update center, you’ll be
prompted to do so. The Update Center will ask you for the User ID
and Password found on a sheet of paper in your Visual Cafe package.
When you’ve entered that information, your browser takes you to a
Visual Cafe page at the Update Center site.

2 Click the link labeled Download Visual Cafe software.

Your browser displays a page about downloading Visual Cafe. On
that page is a link to the LiveUpdate registration utility.

3 Click the Go beside that information.

Your browser displays a page with directions about getting the
LiveUpdate Registration Utility. Follow those directions to obtain a
small utility that you must execute to enable LiveUpdate.

4 Run the LiveUpdate Registration Utility.

You’re connected to the Update Center.

After you connect to the Update Center, LiveUpdate presents you with the
most recent update to your version and edition of Visual Cafe. Note that if
you have a version more than one generation older than the new version,
you do not need to install the intervening updates. For example, if you
have Visual Cafe 3.0a on your hard drive and you want to upgrade to 3.1,
you need not install Visual Cafe 3.0b and any other intervening versions of
Visual Cafe before updating to the 3.1 version.

Using LiveUpdate over the Internet

If you already have a working connection to the Internet, select the Use
Existing Internet Connection option. No further setup is required.

If you do not have a working connection to the Internet or you wish to
connect by modem instead, you should proceed to the Select a Modem
page of the LiveUpdate Setup Wizard and select your modem (and the
communication port your modem is using) from the available choices. See
the following section for details.
A-2

About LiveUpdate
Using LiveUpdate with your modem

If you have a TCP/IP-based connection to the Internet through your
Internet service provider, you can use LiveUpdate to update your copy of
Visual Cafe.

Note: Your dialup or ISDN account with your Internet service provider
must be TCP/IP-based, such as a PPP, SLIP, or CSLIP account. You cannot
use LiveUpdate through a shell account.

You can also use LiveUpdate if you have an account with an online service
such as America Online. You must have the appropriate software installed
and configured to use TCP/IP.

Configuring your modem

When LiveUpdate starts, the first wizard page contains a button labeled
Modem Setup. Clicking this button allows you to change your modem
settings at any time. If you choose not to set up your modem initially and
use your existing Internet connection instead, you will still be able to set
up a modem in the future.

Identifying your modem

If you have an external modem, examine it for a manufacturer and/or
model label. Sometimes this information is on the underside of the modem.
If you can’t identify your modem in this manner, or if you have an internal
modem, try selecting Standard Modem Types from the list of manufacturers
and then selecting the Standard modem model that most closely matches
your modem’s speed, if you know it. For example, if you have a 14,400
baud (14.4) modem you might try selecting 14000 bps Modem as the model.

If you don’t know the speed of your modem, try selecting 9600 bps Modem.
If that doesn’t work, try 2400 bps Modem. As a final alternative, try selecting
Hayes as the manufacturer and either Compatible (default) or Compatible
(alternate) for the model. If none of these selections results in a successful
connection to a LiveUpdate service, you will need to consult your
computer equipment vendor or company MIS/Help Desk for assistance in
determining your modem type.
A-3

Appendix A: Updating Visual Cafe with LiveUpdate
If your modem’s manufacturer is listed but your particular model is not,
you should select Other from the model list. This choice will usually enable
your modem to properly connect, download, and disconnect.

Configuring your modem’s INIT string

If LiveUpdate has your modem manufacturer and model listed, but you’d
like to modify the INIT string to better suit your preferences, LiveUpdate
allows you to do this by clicking the Edit String button in the Select a
Modem wizard page.

Most users will never need to change their modem’s default INIT string;
this option is provided for the few who need or want to modify it. Only
advanced users who know the implications of changing their modem’s
INIT string should attempt to do so.

Note: LiveUpdate requires E0 and V1 to be present in the INIT string for
proper operation.

If you’ve made modifications to the default INIT string but would like to
restore the original string for your particular modem, you can do this by
reselecting your modem manufacturer and model from the list. Your
custom INIT string will be replaced by the default string for the selected
modem.

Selecting the COM port

In the Select a Modem wizard page, you’re asked to select the COM port
for your modem. If you aren’t sure which is the correct COM port, click the
Find My Modem button. The LiveUpdate Setup Wizard will attempt to locate
any modem(s) you have attached to any of the four basic COM ports. If
LiveUpdate finds a modem, it places a red dot next to the corresponding
COM port.

If you have two or more modems on your system, LiveUpdate allows you
to choose the correct one if you know the COM port number of the
modem you want to use. To select the corresponding COM port, highlight
that COM port in the listbox. If you don’t know the COM port, press the
Find My Modem button and LiveUpdate will place red dots corresponding to
all found modems next to the appropriate COM port number or numbers.
Select the COM port from among the entries marked with a red dot.
A-4

About LiveUpdate
Selecting dialing parameters

In the Number to Dial wizard page, a number of countries are listed. Select
the appropriate country, based on where you’re located geographically at
the time you run LiveUpdate. If your location isn’t listed, choose the
nearest location. Users in the United States and Canada should choose the
service in Eugene, Oregon. Users in New Zealand should connect to the
service in Australia. If you are a laptop user and travel extensively, you
may need to change the service location to which you connect based on
the service that is closest to you at the time you run LiveUpdate.

If your company’s phone system requires that you dial a “9” or other code
to access an outside line, you must enter the number in the Number to Dial
wizard page. There’s a box at the bottom of the page labeled LiveUpdate will
dial. Normally, this box contains the phone number of the service to be
dialed. However, you can add whatever codes you need before or after the
number. Specifically, you may enter codes to access outside lines, dial
country codes, enter a calling card number to bill the phone call to, disable
call waiting, access alternate long distance carriers, or add any other
required codes.

If you have call waiting on your phone line, you can disable it so that you
won’t get disconnected if you receive a phone call while you’re using
LiveUpdate. The code required to disable call waiting varies depending on
your phone system. Commonly, codes such as *70, 70#, or 1170 are dialed
before the phone number to temporarily disable call waiting. For the
specific code to disable call waiting in your area, contact your local phone
company.

If you need to dial a particular access code and then wait for a few seconds
before dialing the remainder of the number, you can tell LiveUpdate to
pause by entering a comma in the LiveUpdate dial edit box after the last
digit where you want the pause to occur. The comma causes a modem-
dependent pause period, commonly a few seconds. To increase the time,
add more commas.

Troubleshooting a LiveUpdate connection

If you’re informed that LiveUpdate detected a problem while retrieving
your software update, run LiveUpdate again.

While a number of errors may have occurred, the most likely problem is
that you have insufficient hard disk space to accommodate the size of the
software update being downloaded. The updates are compressed, so they
A-5

Appendix A: Updating Visual Cafe with LiveUpdate
require additional hard drive space beyond their original (compressed)
size. If there is not enough space for the final files, this error may be
displayed. If this error occurs, you should clear some hard drive space
(usually on the drive that contains Windows) and try LiveUpdate again.

LiveUpdate informs you if you have the latest software update for your
product. When you next use LiveUpdate, it will retrieve any updates that
have been released since you last ran it.

You can also try using the LiveUpdate Control Panel to help you in your
troubleshooting efforts.

Uninstalling LiveUpdate upgrades

After you’ve uninstalled previous software upgrades, your Windows 95, 98
or Windows NT registry may still be “dirty” and therefore not allow
LiveUpdate to install upgrades to Visual Cafe.

LiveUpdate includes a utility within the Visual Cafe directory to “clean up”
the registry for Windows 95, 98, or Windows NT and allow you to use
LiveUpdate again to install upgrades to Visual Cafe.

Using LUCLEAN.EXE

LUCLEAN.EXE removes any changes LiveUpdate leaves behind in the
Windows registry. LUCLEAN.EXE is non-destructive to any component of
the operating system. This utility cleans up only LiveUpdate entries for
Visual Cafe.

To run LUCLEAN.EXE:

1 Open a DOS session window.

2 Switch to the Visual Cafe directory.

3 Type LUCLEAN.EXE /LU.

4 Restart your computer and run LiveUpdate again.
A-6

A P P E N D I X B
Troubleshooting

This chapter describes various ways you can configure the Visual Cafe
environment to your development preferences. It also discusses common
programming problems and concerns you may encounter in Java or Visual
Cafe, and presents solutions.

For additional support information, visit Symantec’s technical support
website at the following URL:

http://service.symantec.com

You can access an FAQ (Frequently Asked Questions listing), a knowledge
base, and newsgroups. You can access the newsgroups either with your
newsgroup reader software, or by way of your Web browser. After posting
a message to a newsgroup, you’ll get a response within 24 hours from a
Visual Cafe technical support representative. You can access the following
newsgroups either by way of a Web browser or a newsgroup reader:

symantec.support.itools.win.vcafe.compilation

symantec.support.itools.win.vcafe.database

symantec.support.itools.win.vcafe.deployment

symantec.support.itools.win.vcafe.development_environment

symantec.support.itools.win.vcafe.distributed

symantec.support.itools.win.vcafe.execution

symantec.support.itools.win.vcafe.installation&upgrade

symantec.support.itools.win.vcafe.other

B-1

Appendix B: Troubleshooting
Programming concerns

As with all development tools, your success with Visual Cafe can depend
on a number of things. Your programs may or may not work correctly,
depending on factors such as your system configuration, Visual Cafe
environment settings, and the capabilities of the Java language.

The following sections provide information that will help you solve some
of the most frequently encountered development problems with the Java
language and Visual Cafe.

Limitations of the Java language

Java has some architectural limitations that keep it from performing certain
tasks. You should keep these limitations in mind when you develop
programs using Visual Cafe.

Java and case sensitivity

Java compilers and interpreters are case sensitive, meaning that upper-case
letters are distinguished from lower-case letters. Hello.java is not the
same file as hello.java . The different use of capital letters indicates that
these files are not the same.

When a .java source file is compiled, the compiler creates a file with a
.class extension. The name that the compiler assigns to that .class file
is taken from the class definition in the source file. Essentially, the class
you define in the source code becomes the name of your program. Like all
things in Java, the class definition is case sensitive.

Because of the case-sensitive nature of Java code, compilers, and
interpreters, it’s important to be careful and consistent when you name
projects, source files, and classes.

To prevent problems resulting from case sensitivity, get in the habit of
always naming the project and the main source file with the same case as
the class you’re creating.

Hardware limitations

Another limitation of the Java language is its inability to communicate
directly with computer hardware, such as video cards, modems, or any
B-2

Programming concerns
other devices that use some kind of port on a computer. The Java VM is
blind to system-specific resource details, making it impossible for Java to
access hardware.

Browser issues

Although Visual Cafe is designed to be an efficient and fast development
tool, you must also develop your Java applet to run on other combinations
of platforms and Web browsers.

Besides the built-in security restrictions in Java applets (see “About applets,
applications, servlets, and libraries” on page 2-9), your Java applet will
probably have a different look and feel (and sometimes behavior) on other
platforms and browsers. Here are some things to consider while you’re
developing your Java program:

◆ Select or design your GUI components carefully. For example, a button
being viewed with the Macintosh version of Netscape Navigator will
look different when you run the same program in Microsoft Internet
Explorer for Windows NT. The same button could look different
between the different versions of Netscape Navigator for the various
flavors of UNIX.

◆ Understand how your platform and browsers handle threads.
Macintosh, Windows 95, Windows NT, and UNIX operating systems
each handle threading differently, as do their respective browsers.

◆ Each platform and browser has its own way of terminating applets. For
example, when you start an applet in one browser, move to another
page, then move back to the original page, the applet still runs and is
consuming resources. In other browsers the same applet will terminate
when you move to another Web page and then back. As of this
writing, this inconsistency is not due to a Java language-specific
problem, but rather a lack of standards for implementing Java
capabilities in Web browsers.

When do you have to write your own code?

Generally, Visual Cafe generates all the source code you need to quickly
create basic applets and applications. In many cases you need to write little
or no source code. Visual Cafe also provides the framework for developing
complicated applets and applications, eliminating the need for writing the
B-3

Appendix B: Troubleshooting
routine and tedious source code and allowing you to develop and write
the more sophisticated aspects of your Java program. In some cases you’ll
need to write your own source code, such as when you need to implement
event handling that can’t be done through the Interaction Wizard.

Disabling automatic code generation in Visual Cafe

If you don’t need to use some of the RAD features of Visual Cafe, such as
automatic code generation, you can disable them. For information about
turning RAD off, see “Enabling and disabling RAD and automatic code
generation” on page 4-45.

Disabling sections of automatically-generated code

You can tell Visual Cafe not to execute code that it generates. Place the
Visual-Cafe-generated code between a block like this:

if(false) {

//{{INIT_CONTROLS

.

.

.

//}}

}

Visual Cafe sees your code at design time, but at run time the code that is
automatically generated is ignored.

Repairing a corrupted Visual Cafe environment

When you start Visual Cafe, if your Component Palette is empty or if you
get an error saying “There are no starter templates in your repository,” your
Visual Cafe configuration files have somehow become corrupted. You can
restore these files to repair your Visual Cafe environment.
B-4

Repairing a corrupted Visual Cafe environment
To restore your Visual Cafe environment back to its working state:

1 Exit Visual Cafe.

2 In the VisualCafe\Bin directory, delete the following files:

❖ local.rps

❖ vcafe.reg

❖ VisualCafe.vws

3 Restart Visual Cafe.

Visual Cafe should now run normally.
B-5

G L O S S A R Y
A

action component In an interaction, the component on which a defined action
happens.

anchor component A component that acts as the reference point when you’re
modifying a group of components. When you select multiple
components, the last component selected is the anchor
component. It has distinct, colored selection handles. See
also component.

API (Application Programming Interface) The interface used by an
application program to access an operating system and other
services.

applet A Java program that you can add to a web page and run using
a Java-enabled web browser. See also application.

applet tag HTML code that causes an applet to appear in a web page.
It has the following basic format:
<APPLET code=” applet.class” width= pixw
height= pixh></APPLET>
applet is the name of the applet. pixw is the number of pixels
for the width. pixh is the number of pixels for the height.

AppletViewer A Java utility that lets you run and debug applets.

application A Java program you can run from a computer that has the Java
Virtual Machine. An application is a stand-alone program,
while an applet runs in a web page. See also applet; Java
Virtual Machine.

application template A Visual Cafe template that creates a class file that’s an
extension of the Frame class. This class is a good base for a
main application window.

AutoJAR A Visual cafe feature that, when enabled, automatically shows
changes made to JavaBeans components and updates the JAR
(Java Archive) file.

AWT (Abstract Windowing Toolkit) A standard and portable GUI
library that you can use to create visual user interfaces.
Glossary-1

Glossary
B

Bean A component that complies with the JavaBeans
standard. Also called a JavaBeans component. A Bean
is a reusable component that can be visually
manipulated in a builder tool such as Visual Cafe. For
more information, see the Java web page at
http://java.sun.com/beans/ .

Boolean expression An expression that evaluates to true or false. The most
common Boolean functions are AND, OR, and NOT.

breakpoint A flag you can insert into code at certain points to
pause program execution. You can set simple
breakpoints that stop execution at a certain line or
method, or conditional breakpoints based on an
expression.

Breakpoints window A debugging window that contains a list of all
breakpoints in a project. Use this window to add,
remove, or modify breakpoints. See also breakpoint.

buffer An already open file or Class Browser window that is
in temporary memory.

bytecode Machine-independent code generated by the Java
compiler and executed by the Java interpreter.

C

CAB file (Microsoft Cabinet file) A single file created to hold a
number of compressed files, for use in Microsoft
program development. A cabinet file usually has the
file name suffix of .cab .

call A reference made from one class to methods in
another class.

call chain The sequence of functions that were called to get to
the current function. See also call.

call stack An area reserved in memory by the compiler to keep
track of all method calls that are made. When an
applet or application calls a method, the Java Virtual
Glossary-2

Machine (Java VM) adds the method to the stack.
When the method returns, the Java VM takes it off the
stack. The currently executing method is on the top of
the stack and the previously called methods are below it.

Call Stack window A debugging window that shows all the active method
calls leading to the current process. This window is
useful for following the flow of your code.

class A collection of variables and methods that you can
use to define an object. The variables define the class
structure and the methods define the class behavior.
When compiled as a bytecode program (as opposed
to a native Win32 executable), a Java source file
becomes one or more class files. See also Class
Browser; class path; inner class; main class.

Class Browser A three-paned window that lists the Java classes in
your project and the methods and data members
contained within each class. See also Classes pane;
Members pane; Source pane.

class path The environment setting that indicates where class
files are located on your computer.

Classes pane A Class Browser pane that displays all the classes that
are part of your project. By default, the classes are
displayed by package. See also Class Browser.

Code Helper A Visual Cafe helper tool that interprets the current
source code context and provides either a list of
methods in a given class, a list of the different
versions of a particular method, or a list of class
objects that begin with a particular character
sequence.

component A reusable object that allows you to interact with your
program. Examples of components include user-
interface elements such as scroll bars, buttons, and
text-entry fields. All components supplied with Visual
Cafe are JavaBeans components. See also action
component; anchor component; container;
Component Library; Component Palette; JavaBeans
component; non-visual component; peer component;
top-level component; visual component.
Glossary-3

Glossary
Component Library A collection of components that you can add to your
project.

Component Palette A configurable toolbar that provides easy access to
components. You can place any component that is in
the Component Library on the Component Palette.

conditional breakpoint A breakpoint that lets you stop program execution
when a specified expression evaluates to true. See also
breakpoint.

container A component that can contain other components,
such as an application window that contains a button.
A top-level container, also called a form in Visual
Cafe, is at the top level in the Objects view of the
Project window. It has a corresponding Java file that
appears in the Packages and Files views. See also
form.

contextual menu A menu that appears when you click the secondary
mouse button (usually the right button) in a window.
A contextual menu is often called a pop-up menu.

custom code Java code that you add yourself, as opposed to code
that Visual Cafe automatically creates for you.

D

data member See member.

debug mode An integrated workspace that provides facilities to
find and fix errors in your program’s source code. You
can manage threads, set or clear breakpoints, and
view the methods on the call stack. After editing your
code, restart program execution to see the effect of
your changes. See also incremental debugging.

Debug Toolbar The Visual Cafe toolbar that has buttons for
debugging tools.

declaration A statement that establishes an identifier and
associates attributes with it, without necessarily
Glossary-4

reserving its storage for data or providing the
implementation for methods.

definition A declaration that reserves storage for data or
provides implementation for methods. See also
declaration.

deploy To package your completed program for distribution.

deployment target The destination of a deployed program, which can be
a JAR, CAB, ZIP, or directory.

design time The time during which you create and build an applet
or application in the development environment.

dialog box A window that can receive and process input from a
user (for example, clicking a button or selecting an
item in a list).

display order See z-order.

DLL (Dynamic Link Library) A library which is linked to
application programs when they are loaded or run
rather than as the final phase of compilation.

E

environment options Options that affect various aspects of the way you
work in Visual Cafe. You select these options in the
Environment Options dialog box. You can customize
display, deployment, debugging, editing, and backup
options, among others. See also project options.

event An action or occurrence to which an object can
respond. Events are typically user actions that the
program can capture and respond to. For example,
mouse clicks, key presses, and mouse movements are
events.

event adapter The event listener interface that’s implemented as a
class. See also event listener.

event binding The code that enables an object to receive and
process an event. It’s made up of three parts: the
event handler, the listener or adapter implementation,
Glossary-5

Glossary
and the code to register the listener or adapter to the
object triggering the event. See also event adapter;
event handler; event listener.

event handler A method that’s called when a certain type of event is
triggered. Visual Cafe automatically generates the
code needed to bind the occurrence of an event to an
event handler when you create an interaction with the
Interaction Wizard or the Interaction Tool. The default
name of an event handler is the object name,
followed by an underscore, then the name of the
action that triggers the event.

event listener An object that has defined the listener interface for a
specific event. After this interface has been
implemented in a class, an instance of this class may
be registered as an event listener. When an event is
generated, the event is sent to the object, as well as all
other registered listeners.

event source An object that generates events, such as an AWT
component.

exception An event that occurs during the execution of your
program that interferes with, disrupts, or stops the
normal flow of your program.

F

Files view A Project window view that lists all the files in a
project.

form A container for components that allow a user to
interact with your program. A form might contain a
series of buttons for a user to click, a text-entry field,
or a menu, for example. Applet, Frame, Window, and
some dialog components are forms. You can work on
forms in the Form Designer.

Form Designer The window that visually displays form components
so that you can design the form’s user interface.

frame A window that contains user-interface components
such as buttons, text-entry fields, and menus. You use
Glossary-6

frames when creating a stand-alone application, as
opposed to an applet.

G

garbage collection The process of automatically freeing memory that is
no longer in use. The Java run-time system performs
garbage collection so that you don’t have to explicitly
free the memory associated with objects and other
data.

group A collection of related files in the Component Library.

GUI (Graphical user interface) A user interface made up of
visual elements such as windows, menus, icons, and
so on.

H

Hierarchy Editor The window that displays the class hierarchy for your
project.

HTML (Hypertext Markup Language) The formatting that
makes a text file into a web page. HTML pages
display in a Web browser.

I

IDDE (Integrated Development and Debugging
Environment) A programming environment that
provides tools that are interrelated; if you make a
change in one part of the environment, it will
automatically be reflected in other parts.

identifier A unique term that names a Java language object,
such as a variable, method, or class.

incremental debugging A feature that enables you to edit code while your
program is executing or paused in the Visual Cafe
debugger. Also called run-time editing. This feature is
found in Visual Cafe Professional and Database
Editions.
Glossary-7

Glossary
inheritance The concept wherein classes automatically contain the
variables and methods defined in their superclasses.

inner class A class that’s included within the body of another
class, even within a method (called a local class). An
inner class is also called a nested class. This feature is
new for JDK 1.1 and is useful for creating adapter
classes. After compilation, the inner class ends up in
its own class file, which has a dollar sign ($) in its
name.

instance A data item that’s based on a class. An instance of a
class is usually called an object. For example, multiple
instances of a Form class share the same code and are
loaded with the same components with which the
Form class was designed. At run time, the individual
properties of each instance can be set to different
values.

Interaction Tool A tool that lets you visually create interactions
between components in the Form Designer.

Interaction Wizard A wizard that provides a step-by-step interface for
building relationships between components.

interaction The relationship between two or more components,
or a component and itself. The components may be
on the same form or on different forms. An interaction
consists of: one or more components (trigger
component and action component), a trigger event,
and an action. For example, you can connect a button
(the trigger component) to a text box (the action
component) so that when the user clicks on the
button (the trigger event), the associated text box is
enabled for user input (the action).

interface A set of methods and constants to be implemented by
another object. It defines the behavior, or certain
characteristics, that another object implements. An
interface can define abstract methods and final fields,
but not the implementation of them.

introspection A JavaBeans component’s ability to make public
(publish) the operations, methods, and properties it
supports, and its ability to discover operations,
Glossary-8

methods, and properties of other Beans. Introspection
calls on two API processes: the Java Reflection API
and the Java Serialization API.

invisible component See non-visual component.

J

JAR file (Java Archive file) An archive file that complies
with the JavaBeans standard. A JAR file can contain
one or more Beans and related support files,
including classes, icons, graphics, sounds, HTML
documentation, serialization files, and
internationalization files. You can deploy applets and
applications from a JAR file, which can optionally be
compressed.

JAR Viewer A utility that lets you view the contents of a JAR file.

Java API (Java Application Programming Interface) An API
provided by the JDK (Java Development Kit). For
more information, see Sun’s Java web page at
http://java.sun.com . See also API.

Java file A file that contains Java components and source code.

Java Archive file See JAR file.

Java Development Kit See JDK.

Java Virtual Machine (Java VM) The virtual machine provided with the JDK
(Java Development Kit). The Java VM contains a
bytecode translator that converts a downloaded binary
Java file into instructions that the client machine can
execute, and also library routines that a Java applet
calls. For more information, see Sun’s Java web page
at http://java.sun.com.

JavaBeans A standard for creating portable, cross-platform
components. For more information, see the Java web
page at http://java.sun.com/beans/.

JavaBeans component See Bean.
Glossary-9

Glossary
Javadoc A utility that scans Java source code and generates
HTML documentation from it. Extra HTML files can
also be generated which show all the classes in a
particular package, an index, and a hierarchical class
tree list.

JDK (Java Development Kit) Tools for developing Java
applets and applications. The JDK is included in
Visual Cafe. It’s also available on Sun’s Java web page
at http://java.sun.com.

JFC (Java Foundation Classes) A set of Swing components
plus several accessibility features. See also Swing.

JIT (Just-In-Time compiler) An integrated tool that
compiles bytecode into machine language and then
caches it for much faster execution than by the VM
itself. Instead of using a command-line interface, as
does Sun’s Java compiler, the Symantec JIT compiler
lets you click on a single icon to compile and execute
a program.

Just-In-Time compiler See JIT.

L

layout (Also called layout manager) A property for container
objects like forms and panels. The Layout property
automatically arranges components in a container so
that they display well on different platforms, web
browsers, screen sizes, and screen resolutions.

LiveUpdate A service that lets you download the latest version of
Visual Cafe.

local variable A data item that’s defined within a block of code and
accessible only by the code within the block. For
example, a variable defined in a Java method is a
local variable and can’t be used outside the method.
Glossary-10

localization Changing a program to make it appropriate for a
particular country, region, or dialect. Visual Cafe
includes a tool to speed up localization.

M

macro A sequence of keystrokes that automate a task.

main class A class that contains a main method. The main class
is the starting point for program execution.

manifest file A file that describes the contents of an archive such as
a JAR. The file provides information on certain parts
of the archive and can provide information about any
JavaBeans in a JAR.

MDI (Multiple Document Interface) A workspace setting
that allows you to float or dock certain windows. See
also SDI.

member A variable or method defined in a class.

method Behavior that acts on an object. A method is defined
in a class. A class method is a method that’s invoked
by using a class name. An instance method is a
method that’s invoked by using the name of an
instance (the object).

Messages window A window that displays informational and error
messages. For example, if Visual Cafe detects an error
during parsing, the error message is displayed here.
You can double-click an error message to open the
file in which the error was detected.

modal Window or dialog box behavior that requires you to
take some action before the focus can switch to
another window or dialog box.

modeless Window or dialog box behavior that doesn’t require
you to take some action before the focus can switch
to another window or dialog box.

multithreading A program’s use of threads to perform several
processes simultaneously. See also thread.
Glossary-11

Glossary
N

nested class See inner class.

non-visual component A component that is not visible at run time, such as a
Timer, or displays in a different way in the Form
Designer and at run time, such as a MenuBar. A non-
visual component doesn’t extend from the Java
component class. In the Form Designer, a non-visual
component is represented by an icon that doesn’t
affect the form layout. See also visual component.

O

object An instance of a class. See also instance.

Objects view A Project window view that displays the components
and HTML files (if any) in a project.

P

package A group of related classes and interfaces that can be
used by programs that import the package. Java
source code is organized into packages. Each part of a
package name generally refers to a hierarchical
directory structure. For example,
COM.sun.java.swing is in the directory structure
/com/sun/java/swing . If you’re going to
distribute your packages, you should create a globally
unique name based on an Internet domain name. For
example, sun.COM is specified as COM.Sun. This first
part of the name is in uppercase letters; if the first part
isn’t in uppercase letters, it’s for local use, except for
packages that are part of the Java language and
system (which start with java). Packages help
prevent naming conflicts. For example, two Java files
could have the same names, but as long as they’re in
different packages, there’s no naming conflict.

Packages view A Project window view that displays the packages in
your project. See also packages.
Glossary-12

panel A container that you can add to another container.
You can use a panel to group a window into logical
regions.

project An organized collection of related files that make up a
Java program you’re creating in Visual Cafe. The
program can be an applet, application, JavaBeans
component, or library.

project file The central element of a project. The project file
contains all the information you need to manage the
project, such as the locations of items in a project, as
well as additional information such as compiler
options and browser data. See also project.

project folder Most of the elements of a project, together with the
project file, are kept in this folder. See also project file.

project options Options that affect various aspects of the way you
work in a particular Visual Cafe project. You select
these options in the Project Options dialog box. You
can customize version control, debugger, compiler,
and deployment options, among others. See also
environment options.

project path The path for components that are specific to a
particular project. The default project path is the
project folder, along with all subfolders it contains. See
also project folder.

project template A collection of components that you can use as the
foundation for an applet, application, library, or Bean.
When you choose a template for a new project, the
new project inherits all of the template’s components.
You can create project templates for web sites, single
documents, and applets.

Project window The window that displays a project’s contents. You
can see a list of objects, packages, or files, depending
on whether you select the Objects, Packages, or Files
tabs. See also project.

property An attribute of a component. Properties define
component characteristics such as size or color, or the
Glossary-13

Glossary
state of an object, such as enabled or disabled. See
also Property List .

Property List A window that displays the properties of a project’s
components.

R

RAD (Rapid Application Development) The process of
creating programs in a visual development
environment such as Visual Cafe.

resource bundle A file containing locale-specific information. When a
program needs a resource specific to a locale, such as
a string in French, the program can load the resource
from a resource bundle for that locale. This way, you
can write locale-independent code that stores locale-
specific information in resource bundles.

run time The time when your applet or application is running.
At run time, you can interact with your program as a
user. If you encounter a problem while running the
program, you can switch from run mode to debug
mode. See also debug mode.

run-time editing See incremental debugging.

S

scope The access type of a variable or method.

◆ Public: Accessible from any class.

◆ Protected: Accessible from the class that defines the
variable or method and from the class’s subclasses.

◆ Private: Accessible from the class that defines the
variable or method.

◆ Package: Accessible from any class in the package
that defines the variable or method. This is the
default access type.
Glossary-14

SDI (Single Document Interface) The user interface
employed by Visual Cafe versions prior to 2.5. In
version 3.0, you can use SDI or MDI. See also MDI.

servlet A Java program that runs on a Java-enabled server
and can dynamically extend server-side functionality.
A servlet can provide services using a request-
response paradigm; it doesn’t have a GUI. For
example, a servlet can provide secure access to data
presented in an HTML Web page and let users
interactively view or modify data. See also applet

SJ (Symantec Javac) A utility that lets you compile Visual
Cafe programs from a DOS window, thereby saving
memory while compiling.

Source pane The pane in the Class Browser that lets you view and
edit Java source code. (The Source pane serves the
same functions as the Source window.) See also
Source window.

Source window The window that lets you view and edit Java source
code, an HTML file, or a text file. The Source window
is also available when you’re debugging. (The Class
Browser’s Source pane serves the same functions as
the Source window.) See also Source pane.

Swing Refers to the Java Foundation Classes (JFC), which
provide a comprehensive set of GUI components that
extend the functionality of AWT components. Swing is
not platform-specific and offers a pluggable look and
feel.

Syntax Checker A Visual Cafe troubleshooting tool that highlights
possible Java syntax errors while you’re typing code
in the Source window.

system path The path where classes are located. Components that
will be used in many projects should be placed in
folders in the system path. The default system path is
the Java Libraries\Classes in your Visual Cafe
folder.

T

Glossary-15

Glossary
target In Java, the applet or application that is the result of a
project. In HTML, the point to which a link directs a
user.

template See project template.

thread A path of execution in a running application. For
example, an application can have threads that handle
background processes that aren’t visible to the user.

Threads window The debugger window that displays all the threads
your program has created, as well as the state of each
thread. You can pause individual threads, which
causes their execution to cease temporarily while all
other threads continue to execute, then resume them.
This helps you check for and resolve thread
synchronization errors, where more than one thread is
in contention for the execution of a method. See also
thread.

top-level component See form.

trigger event The originator of an interaction between components.

V

variable The structure in memory that holds data that has been
assigned to it. A variable that is defined in a class
defines the class’s structure. A class variable is a
variable associated with a class and not with a
particular instance of a class. An instance variable is a
variable associated with an instance of a class (an
object)

Variables window The debugger window that shows the variables that
are active in the current context. To change a variable
value at run time, edit its value in this window.

visual component A user-interface element, such as a window, menu, or
button, that appears in the Visual Cafe Project window
and Form Designer and is visible at run time. It
extends from the Java Component class and has a
screen position, a size, and a foreground and
background color. See also non-visual component.
Glossary-16

Visual Page A Symantec application that lets users design and
publish web pages in a visual environment. Visual
Page is included with Visual Cafe Professional and
Database Editions.

VM See Java Virtual Machine.

W

Watch window The debugging window that displays the value of a
variable or expression that you enter. The values
update when you pause execution or step through
code. You can also examine the contents of a class
member. You can modify values directly in this
window and continue debugging without having to
stop and restart the debug session.

web server A computer that stores and sends out web pages in
response to HTTP (Hypertext Transfer Protocol)
requests from web browsers.

wizard An interactive help utility that guides you through a
task by presenting a series of screens where you enter
information.

workspace A saved arrangement of windows that have related
functions. For example, you might use one
configuration of windows when you’re building
interactions between components, and another when
you’re debugging your code.

Z

z-order (Also called display order) The order in which
components are diaplayed. The z-order affects the
visibility of visual components when they’re layered
on top of one another.
Glossary-17

I N D E X
A
Abstract Windowing Toolkit. See AWT
Accelerator Editor, 8-24
accessor methods, 10-4
action component, 9-2
ActionDescriptor class, 10-27–28
actions, 10-28

ActionDescriptor class, 10-27–28
applets

adding HTML files to projects, 3-50–54
adding to HTML page, 3-52–53
advantages of, 2-11–12
applet tag, 3-51
browser versions needed to run, 2-11
debugging in Web browser, 6-42–43-46
deploying, 5-32–33
introduction to, 2-10–12
limitations of, 2-12
overlapping components in, 7-33
overview of creating, 2-16–17
passing parameters to applets, 3-54–55
running in a browser, 5-2–4
running in AppletViewer, 5-2–3
security restrictions, 2-12, B-3
specifying HTML file, 5-3
Swing, 8-7

AppletViewer, 5-2–3
applications

configuring to run in Visual Cafe, 5-4–6
deploying, 5-33–34
introduction to, 2-12–13
overview of creating, 2-17–18
specifying arguments for, 5-6

archiving, 5-36–38
archive files, 5-35–50
archive type, setting, 5-40–44

Archiver tool, command-line deployment using,
5-35–38

arguments, specifying for application, 5-6
ASCII, converting between native code and, 13-

14–17
AutoJAR, 10-19–20
AWT components, 2-6, 7-2

mixing with Swing components, 8-7

B
backup options, 3-83–86
BeanInfo object, 10-27, 10-29
Beans. See JavaBeans components
bookmark, setting, 4-81
border object, 8-12
borders, 8-12–14
bound properties, 10-5
breakpoints. See also Breakpoints window

breakpoints, 6-4, 6-16–26
Breakpoints window, 6-4, 6-17
clearing, 6-21–22
clearing all, 6-22
enabling or disabling, 6-20
ignoring all, 6-22
setting conditional, 6-19
setting, 6-18
setting at a line number, 6-19
setting at a method, 6-20
viewing source code for, 6-23

browser. See Web browser
build

debug, 5-16–18
final 5-16–18

C
CAB file, 5-36–38

deploying to with Archiver tool, 5-36–38
setting archiver options for, 5-50–51

Cafeever, 11-21
call stack, 6-5. See also Call Stack window
Call Stack window, 6-5, 6-31–33

viewing method parameters, 6-32
viewing method source code, 6-32–33
viewing variables for a method, 6-32

case sensitivity in Java, B-2
Class Browser, 4-1–27

Classes pane, 4-3–4, 4-12–13
configuring, 4-6–11
Members pane, 4-4–5, 4-13–14
opening, 4-11–12
Source pane, 4-5–6, 4-14

class, 4-6–27. See also Class Browser; Insert Class
Wizard
Index-1

ActionDescriptor, 10-27–28
adding, 4-21–22
changing attributes, 4-38
changing inheritance, 4-37
copying, 4-23
deleting, 4-24
editing, 4-22
editing source code for, 4-24
event adapters, 10-7–8
locating, 4-25–27
locating class definition, 4-25–27
locating in Hierarchy Editor, 4-37
main, 5-4, 11-5
moving, 4-23
renaming, 4-23–24

Code Helper, 4-49–50
coff utility, 11-21–22
column model, 8-18
command key sequences, 3-73–80

associating with menus, 7-54–55
command-line deployment with Archiver tool, 5-

35–38
command-line tools for native Win32

applications, 11-18–22, 5-12–14
compilers. See compiling
compiling

advanced Win32 options, 11-12–14
clearing Messages window before build, 5-

19
compiler errors, 5-15–16
custom compiler flags, 5-64
introduction to, 2-15–16
Project options Compiler tab, 11-11–12
setting compiler options, 5-57–64
showing all Java messages when using Sun’s

compiler, 5-62–63
showing compiler warning messages, 5-61
showing dependencies, 5-62
showing progress messages, 5-61
SJ command-line utility, 5-7–14
specifying make settings, 5-63
specifying output folder for project, 5-19–21
Sun Microsystems’ javac.exe compiler, 2-15–

16, 5-60–61
compiling, Symantec’s Just-In-Time

compiler, 2-15, 5-28
viewing compiler messages, 5-14–16

Component Library, 7-7–11. See also Component
Palette

adding components to, 7-8
creating a component template, 7-9
adding custom components, 7-9
adding group to, 7-10, 7-16
adding JavaBeans to, 10-21–22
arranging components in, 7-11
deleting components from, 7-11
 deleting JavaBeans from, 10-22
updating JavaBeans in, 10-19–20

Component Palette, 7-10–19. See also Component
Library

adding components to, 7-16
customizing, 7-13–19
deleting components, 7-18–19
docking, 7-13
floating, 7-13
hiding, 7-13
Interaction Tool, 7-12
moving components in tabs, 7-18
renaming tabs, 7-19
Selection Tool, 7-12

components. See also AWT components;
Component Library; Component Palette;
JavaBeans components; Swing components

adding to project, 3-49–50
action, 9-2
adding event handler to, 9-22–23
adding to a form, 7-27–29
arranging using layout managers, 7-37–48
borders, 7-24
containers, 7-2, 7-5–6
converting component description files to

JavaBeans, 10-23–24
copying, 7-29–30
custom, 7-9
customizer, 7-35
deleting, 7-31
description files, 10-23
display order of, 8-21
heavyweight, 7-6, 8-2, 8-26–27
introduction to, 2-5
Jcomponent class, 8-5
lightweight, 7-6, 8-2, 8-26–27
look and feel, 8-9–11
menus, 7-49–55
Index-2

modifying properties, 7-36–37
non-visual, 7-2
non-visual, 7-2, 7-23
object, 3-5
overlapping in applets, 7-32–33
peer, 8-2
persistence, 10-8
properties, 7-34–37
renaming, 7-32
template, 7-9
top-level, 7-4
viewing in project, 3-48–49
visual, 7-2
z-order of, 8-21

constrained property, 10-5
containers, 7-2, 7-5–6

choosing layout manager for, 8-14–15
panels, 7-5

customizer, 7-35
using to configure a component on a form,

10-26
JavaBeans, 10-9

D
debug build, 5-16–18
debugging. See also Breakpoints, Call Stack,

Messages, Source, Threads, Variables, Watch
windows

debug mode, 6-3
debug toolbar, 6-9–10
debug workspace, 6-3–10
debugger messages, 6-15–17
ending session, 6-13–14
exceptions, 6-3–407
generating debug information, 5-60
in Web browser, 6-42–43
incremental, 6-40–41
introduction to debugger, 6-2
introduction to, 2-14–15
native Win32 applications, 11-6–7
remote, 6-43
resuming execution, 6-15
starting session, 6-11
threads, 6-33–37
pausing execution, 6-14–15

declarations, 4-2
deployment target, 5-31

deployment, 5-31–54
applet, 5-32–33
application, 5-33–34
archive files, 5-35–50
Archiver tool, 5-35–38
environment options, 5-52–54
project options, 5-38–54
setting advanced options, 5-51–52
setting project options, 5-38–54

dialog box, adding to a form, 7-33–34
directories. See folders
display order, 8-7, 8-21
DLL

specifying class or package to be exported,
11-10–12

specifying program for running and
debugging, 11-9–10

command-line options, 5-12–14
creating native Win32, 11-2
creating, 11-2–18
debugging, 11-6–7
defined, 11-1
deploying native Win32, 11-5–6
deploying, 11-5–6
included with VC, 11-2
naming, 11-7–9
registering using SNREG, 11-19–20

Dynamic Link Libraries. See DLL

E
Environment Options, 3-64–86

internal VM, 5-28–31
backup, 3-83–86
choosing a Java Virtual Machine, 5-22–27
Class Browser, 4-10
Component Palette, 7-15
controlling display of expert properties, 8-

21–22
controlling display of read-only properties,

8-21–22
converting ASCII to native 13-14–17
converting native to ASCII, 13-14–17
defining Help file set, 3-69
deployment options, 5-52–54
expert properties, 7-36
font settings, 3-81–83
Hierarchy Editor, 4-10
 Index-3

inheriting class path from Windows, 3-71
MDI, 3-20–21
Property List tab, 8-21–22
saving 3-83–86
setting class path for Web browser, -3-71–72
setting environment variables in sc.ini, 3-72
source-file search paths, 3-69–70
startup mode, 3-67–68
text formatting, 4-54–59
Undo command scope, 3-69

errors
symbol undefined, 11-4
compiler, 5-15–16

event adapters, 10-7–8
event handler

adding to a component, 9-22–23
deleting, 9-23
editing, 9-23
introduction to, 9-1, 10-7
sample source code, 9-24–26

event listener, 9-20, 10-7
event source, 9-20, 10-7
event state object, 10-7
events. See also event handler

event adapters, 10-7–8
event listener, 9-20, 10-7
event source, 9-20, 10-7
event state object, 10-7
introduction to, 9-1–2
Java 1.0 event inheritance model, 9-21
Java 1.1 event delegation model, 9-20–22
JavaBeans, 10-2
low-level, 9-20
method signature, 10-8
multicast event source, 10-7
persistence, 10-8
semantic, 9-20
trigger, 9-2
unicast event source, 10-7
window, 9-20

exceptions, 6-37–40
expert properties, 7-35

controlling display of, 8-21–22

F
files

adding existing files to projects, 3-44–46

adding to project, 3-43–44
copying into or within a project, 3-47
deleting from project, 3-46
organizing, 3-13–15
sharing among projects, 3-48

final build, 5-16–18
folders
organizing, 3-13
project folder, 3-13–14

font options, setting, 3-81–83
Form Designer. See also forms

adding a form to a project, 7-26–27
adding components to, 7-21–22
creating interactions in, 9-6–7
deleting interactions in, 9-17
displaying graphics in, 7-23
displaying non-visual components in, 7-23–

24
grid, 7-39–40
keyboard shortcuts, 7-22
opening, 7-26
using virtual fonts in, 7-24–25
viewing selected interactions in, 9-17–18

forms, 2-7, 7-20–34. See also Form Designer
adding components to, 7-27–29
adding to project, 7-26–27
adding dialog box to, 7-33–34
tabbing between fields in, 7-33

frames, 2-7
function inlining, 5-59

G
getter methods, 10-4
graphical user interface. See GUI
group, adding to Component Library, 7-10
GUI, overview of designing, 7-25–26

H
heavyweight components, 7-6, 8-2

mixing with lightweight components, 8-2, 8-
26–27

Hierarchy Editor, 4-35–41
configuring, 4-9–11
configuring, 4-9–11
locating class in, 4-37
viewing imports, 4-9–11
Index-4

HTML files
adding applet to page, 3-52–53
adding to projects, 3-50–54
editing, 3-53–54
receiving parameters from, 3-54–55
viewing in project, 3-48–49

I
icon object, 8-15
icons, adding to Swing components, 8-15–18
IDDE, 2-1
imports, 4-84–88

parsing, 5-18–19
viewing in Hierarchy Editor, 4-36
imports, Visual J++ projects, 4-84–89

incremental debugging, 6-40–41
indexed properties, 10-4–5
inheritance, changing, 4-7
inlining, 5-9, 5-59
Insert Class Wizard, 4-15–20
Integrated Development and Debugging

Environment, 2-1
Interaction Tool, 7-12, 9-6
Interaction Wizard, 9-2, 9-7–14
interactions, choosing which are shown, 9-17–18
interactions, creating, 9-5–16
interactions, deleting, 9-17
interactions, editing, 9-16–17
interactions, Interaction Tool, 9-6
interactions, Interaction Wizard, 9-2, 9-7–14
interactions, introduction to, 9-1–2
interactions, overview of creating, 9-3–4
interactions, source code for, 9-18–21
Internet Explorer, version needed to run Visual

Cafe‚ 3.0 applets, 2-11
introspection, 10-5–7
Introspector, 10-6–7
invisible components. See non-visual

components

J
JAR file, 5-31–38, 5-54–56. See also AutoJAR

adding external files to, 5-55
deploying to with Archiver tool, 5-36–38
expanding, 5-56
JAR Viewer, 5-56–57
manifest settings for, 5-49

setting archiver options for, 5-48–50
viewing, 5-56

JAR Viewer, 5-56–57
Java

1.0 event inheritance model, 9-21
1.1 event delegation model, 9-20–21
Foundation Classes, 8-1. See also JFC
Reflection API, 10-5
Serialization API, 10-5

Java Virtual Machine, 2-12
internal VM options, 5-28–31
setting parameters for, 5-22–27
using different VMs in Visual Cafe, 5-22–27

Java
hardware limitations, B-2–3
limitations of, B-2
working with imported code, 4-84–88

JavaBean Wizard,
creating JavaBeans with, 10-12–17

JavaBeans components, 2-7. See also JavaBeans
specification

accessor methods, 10-4
ActionDescriptor class, 10-27–28
adding to Component Library, 10-21–22
adding Visual Cafe‚ information to, 10-27–29
Application Builder Support service, 10-8
Bean storage, 10-8
BeanInfo object, 10-27, 10-29
bound properties, 10-5
constrained properties, 10-5
converting component description files to,

10-23–24
creating, 10-9–17
customization of, 10-3
customizers, 10-9, 10-26
definition, 10-1
deleting from Component Library, 10-22
design fundamentals, 10-9–10
design patterns, 10-6
dynamically developing with, 10-20
event binding, 10-3
events, 10-2
explicit introspection facility, 10-6
getter methods, 10-4
indexed properties, 10-4–5
introspection, 10-5–7
Introspector, 10-6–7
 Index-5

manifest file, 10-8
manifest properties, 10-3
manipulator methods, 10-4
methods, 10-2
modifying properties, 10-25–26
non-visual, 10-2
packaging for distribution, 10-21
packaging, 10-3
persistence, 10-8
properties, 10-2
property editor, 10-8–9
property management, 10-4–5
property sheet, 10-8–9
reflection, 10-5–7
serialization of, 10-3, 10-5–7
services, 10-3–9
setter methods, 10-4
support for internationalization, 10-2
testing, 10-18
updating in Component Library, 10-19–20
updating local, 10-18
updating, 10-18–20
using customizer to configure a component

on a form, 10-26
JavaBeans Introspector service, 10-6–7
JavaBeans specification. See also JavaBeans

components
features supported by Visual Cafe, 10-2–3
services, 10-3–9

javac.exe compiler, 2-15–16, 5-60–61
Javadoc

comments, 4-59–73
options, 4-70–73
specifying folders, 4-69–70
switches, 5-10–12
Viewer, 4-66–69

JFC, 2-6, 8-1. See also Swing
JIT. See Just-In-Time compiler
Just-In-Time compiler, 2-15, 5-28

K
keyboard accelerator, 8-24
keystroke mnemonics, 8-5, 8-24
keywords, 2-13

public, 2-13

L
layout managers, 7-37–48

arranging components without, 7-41
BorderLayout 7-42
CardLayout 7-42–44
 choosing for container, 8-14–15
FlowLayout, 7-44
GridBagLayout, 7-45–48
GridLayout, 7-41
None, 7-41

libraries. See also DLLs
deploying native Win32, 11-5–6
deploying, 11-5–6
introduction to, 2-13
linking to native Win32, 11-14–16
making available to projects, 11-16–17
setting search paths for, 11-18

lightweight components, 7-6, 8-2
mixing with heavyweight components, 8-7,

8-26–28
linker, 11-4
linking

native Win32 applications, 11-4–5
OPTLINK, 11-20–21
static, 11-4

LiveUpdate, 1-1, A-1–6
localization

adding or deleting a locale, 1-11
converting between native and ASCII

characters, 13-14–17
editing a resource bundle, 13-13–14
 introduction to, 13-1–3
locales, 13-2
Localization tool, 13-4–5
localizing auto-generated code, 13-9–11
localizing individual strings, 13-6–9
resource bundles, 13-1–3

look and feel, choosing, 8-9–11

M
main class, 11-5, 5-4

specifying for application, 5-5
main method, 11-5, 2-13
make settings, 5-63
manifest file, 10-8, 5-49
Index-6

manipulator methods, 10-4
MDI, 2-8–9, 3-19–23
members, 4-2, 4-27–34

adding, 4-29–30
copying, 4-31
deleting, 4-31–32
locating, 4-28–29
moving, 4-31
renaming, 4-32–33
viewing attributes, 4-33–34
viewing source code, 4-33

menus
adding submenus, 7-52
AWT-based, 7-50–52
binding code to menu item, 7-55
command key shortcuts, 3-73–80
command keys, 7-54–-55
designing, 7-49–55
Swing, 8-7, 8-22–27

Messages window, 6-15–16, 6-5–6
clearing before a build, 5-19
show all Java messages when using Sun’s

compiler, 5-62–63
showing compiler warning messages, 5-61
showing dependencies, 5-62
showing progress messages, 5-61
Messages window, viewing compiler

messages, 5-14–16
methods, 4-2

accessor, 10-4
getter, 10-4
main, 11-5
manipulator, 10-4
setting breakpoint at, 6-20
method signature, 10-8
setter, 10-4
signature, 10-8
stepping out of, 6-25
stepping into, 6-24
stepping over, 6-25
viewing parameters on call stack, 6-32
viewing source code for, 6-32–33

Microsoft Internet Explorer. See Internet Explorer
Microsoft Source Code Control interface, 12-1
model-view-controller, 8-3
multicast event source, 10-7
Multiple Document Interface. See MDI

multithreading, 6-6

N
native libraries, included with VC, 11-2
native Win32 application

advanced compiler options, 11-12–14
command-line options, 5-12–14
command-line tools for, 11-18–22
creating, 11-2–18
debugging, 11-6–7
deploying, 11-5–6
introduction to, 11-1–2
linking library files to, 11-14–16
linking, 11-4–5
main class in, 11-5
naming, 11-7–9
project options for, 11-7–18
samples, 11-22–25
specifying working directories for, 11-9

Navigator
debugging in, 6-42
version needed to run applets, 2-11

Netscape Navigator. See Navigator
non-visual components, 7-2, 7-23

displaying in Form Designer, 7-23–24

O
objects, 3-5

event state object, 10-7
BeanInfo, 10-27, 10-29
border, 8-12
icon, 8-15

OPTDUMP, 11-21
OPTLINK, 11-20–21

P
package, 3-6
panels, 7-5
parsing imports, 5-18–19
peer components, 8-2
persistence, 10-8
project file, 3-11, 3-13
project folder, 3-13–14, 5-19–21
Project Options, 3-55–64

archive type, 5-40–44
archiver options for CAB files, 5-50–51
archiver options for JAR files, 5-48–50
 Index-7

class search path, 3-60–62
Compiler tab, 11-11–12
custom compiler flags, 5-64
debug or final release type, 5-16–18
deployment, 5-38–54
Directories tab, 11-17
enabling and disabling RAD, 4-45–47
for native Win32 applications, 11-7–18
generating debug information, 5-60
Java optimizations, 5-59
Localize Generated Code, 13-10
managing archive files, 5-45–46
Project tab, 11-8–10
protocol, 5-40
servlet execution settings, 3-33–34
setting advanced deployment options, 5-51–

52
setting program type, 3-58–60
show all Java messages when using Sun’s

compiler, 5-62–63
showing compiler warning messages, 5-61
showing dependencies, 5-62
showing progress messages, 5-61
signer tool, 5-40
source-file search path, 3-62–63
specifying make settings, 5-63
specifying output folder for project, 5-19–21
specifying what files to include in archives,

5-44
Version Control tab, 12-6

project path, 3-15
project templates, 3-25–33

creating, 3-28–29
deleting, 3-29
setting new default, 3-28

Project window, 3-2–10
changing tab display, 3-8–9
dragging files into, 3-9–10
Files view, 3-42–43, 3-5
Objects view, 3-4–5
opening editors from, 3-10
Packages view, 3-6–7

projects, 2-7. See also project templates; Project
window

adding components to, 3-49–50
adding existing file to, 3-44–46
adding new file to, 3-43–44

adding form to, 7-26–27
AWT applet, 3-26
AWT application, 3-27
closing, 3-42
contents of, 3-11–13
copying files into or within, 3-47
copying, 3-4041
deleting file from, 3-46
deleting, 3-41
deploying, 5-31–54
documentation files, 3-13
introduction to, 3-1
JavaBeans Wizard, 3-27
JFC application, 3-27
JFC applet, 3-27
migrating from earlier version, 3-38
multiple, 3-15–16
opening items in, 3-41
opening, 3-36
other projects contained in, 3-12
project file, 3-11, 3-13
project folder, 3-13
project path, 3-15
renaming, 3-40
running, 5-1–6
saving files among, 3-48
saving, 3-39–40
servlet, 3-27
setting default template, 3-28
source files, 3-12
specifying output folder for, 5-19–21
subprojects, 3-15–17
target, 3-2
using older projects and files, 3-37–38
viewing active, 3-16
viewing components in, 3-48–49
viewing HTML files in, 3-48–49
Win32 AWT application, 3-27
Win32 Console application, 3-27
Win32 Dynamic Link Library, 3-27

properties
bound, 10-5
component, 7-34–37
constrained, 10-5
expert, 7-35
indexed, 10-4–5
Index-8

JavaBeans property management, 10-4–5
JavaBeans, 10-2
modifying JavaBeans, 10-25–26
modifying, 7-36–37
property editor, 10-8–9
Property List, 7-34–37
property sheet, 10-8–9

Property List, modifying JavaBeans properties in,
10-25–26

protocol, setting, 5-40
public keyword, 2-13

R
RAD, 1-1

enabling and disabling, 4-45–47
Rapid Application Development. See RAD
ReadMe file, 1-13
read-only properties

controlling display of, 8-21–22
reflection, 10-5
release type

debug, 5-16–18
final, 5-16–18

remote debugging, 6-43–46
Resource Bundle Editor, 13-13–14
resource bundle, 13-1–3. See also localization;

Resource Bundle Editor

S
save options, 3-83–86
sc.ini file

setting environment variables in, 3-72
SCC version control interface, 12-1
SDI, 2-8
searching

advanced criteria, 4-79
for library files, 11-18
for matching delimeter, 4-83
jumping to specific location, 4-79–83
search and replace, 4-74–79
setting bookmark, 4-81
wildcards, 4-73–74

selection model, 8-18
Selection Tool, 7-12
serialization, 10-5–7
servlet

creating, 3-30–35

introduction to, 2-14
setter methods, 10-4
signer tool, setting, 5-40
Single Document Interface. See SDI
SJ command-line utility

compiling from, 5-7–14
environment variables, 5-13
switches, 5-7–10

SMAKE, 11-20–21
SNREG, 11-19–20
source code

adding custom, 4-48–49
disabling sections of automatically-

generated, B-4
disabling automatic code generation, B-4
files, 3-11
for event handler, 9-24–26
for interactions, 9-18–21
importing Visual J++ projects, 4-84–89
importing, 4-84
Javadoc comments, 4-59–73
migrating from JDK 1.0 to JDK 1.1, 3-38
printing, 4-47
stepping through, 6-24–26
viewing for breakpoint, 6-23
viewing for threads, 6-36
writing custom, B-3–4

Source window, 4-38–59, 6-8–9
adding custom code, 4-48–49
Code Helper, 4-49–50
displaying, 4-40
editing source fie, 4-41–42
horizontal scroll bars in, 4-42–43
key-editing options, 3-79–80
printing source code, 4-47–48
setting text formatting for single file, 4-53–54
Syntax Checker, 4-51–52
typing modes, 4-43–45

startup mode, setting, 3-67–68
static keyword, 2-13
static linking, 11-4
Step Into, 6-24
Step Out, 6-25–26
Step Over, 6-25
subprojects, 3-15–17
Swing components, 2-6–7

Accelerator Editor, 8-24
 Index-9

adding icons to, 8-15–18
borders, 8-12–14
changing look and feel of, 8-10–11
creating a project with, 8-8–27
creating applets with, 8-7
customizing, 8-7–8
heavyweight, 8-2, 8-26–27
introduction to, 8-1–8
lightweight, 8-2, 8-26–27
menus, 8-7, 8-22–27
mixing AWT components and, 8-7
specifying model of, 8-18–21
tool tips, 8-12
using Action components in menus and

toolbars, 8-25
using non-Swing in Swing project, 8-26–27

Swing Menu Designer, 8-22–27
switches

Javadoc, 5-10–12
SJ command-line utility, 5-7–10

Syntax Checker, 4-51–52
system path, 3-14–15

T
target, 3-2
technical support. See also Online Help

deployment log, 5-51
Symantec technical support Web site, B-1
Visual Cafe‚ newsgroups, B-1

templates. See project templates
component, 7-9

text formatting options, 4-54–59
thread, 6-6
Threads window, 6-33–37, 6-6–7
threads. See also Threads window

active, 6-33
debugging, 6-33–37
debugging single, 6-34
primary, 6-33
resuming other suspended, 6-36
resuming suspended, 6-35
suspending other, 6-36
suspending, 6-34
viewing active variables in, 6-36–37
viewing call stack for, 6-37
viewing source code for, 6-36

tool tips, 8-5

for Swing components, 8-12
toolbars, 2-3

docking, 3-25
floating in workspace, 3-24

trigger event, 9-2
troubleshooting, B-1–6

U
Undo command, setting scope of, 3-69
unicast event source, 10-7
Unicode

converting between native and, 13-14–17
UNIX-based Web server, configuring for applet

deployment, 5-35

V
variable, 6-7

adding to Watch window, 6-29
deleting from Watch window, 6-30
modifying in Watch window, 6-29–30

Variables window, 6-26–31, 6-7–8. See also
variables

modifying in Variables window, 6-27
viewing active in thread, 6-36–37
viewing type information for, 6-27
viewing value of, 6-26

version control
adding and removing files, 12-10–13
checking files in and out, 12-13–16
configuring, 12-5–7
getting latest version of a file, 12-17–18
installing version control systems, 12-2
Microsoft Source Code Control, 12-1
renaming files, 12-16
running, 12-21
setting default user name, 12-21
setting options, 12-7–10
showing differences between files, 12-19–20
Version Control interface, 12-1

virtual fonts, 7-24–25

Visual Cafe
installing, instructions in CD-ROM case
Database Edition, 1-1
documentation, 1-11–13
Getting Started and Tour, 1-12
introduction to basic features, 2-2–16
Index-10

new features, 1-2–9
new menu arrangement, 1-9–11
PDF versions of documentation, 1-13
Professional Edition, 1-1
programming experience needed, 1-14
ReadMe file, 1-13
repairing corrupted environment, B-4–5
Sourcebook, 1-12
Standard Edition, 1-1
troubleshooting, B-1–6
updating with LiveUpdate, 1-11
version compatibility, 1-9
Visual Page, 1-2
Version Control interface, 12-1

Visual J++ projects, importing, 4-84–89
Visual Page, 1-2
void keyword, 2-13

W
Watch window, 6-28–31, 6-8

adding variable to, 6-29
deleting variable from, 6-30
modifying variable in, 6-29–30

Web browser
debugging in, 6-42–43
running applets in, 5-2–4
setting class path for, 3-71–72
versions needed to run Visual Cafe‚ 3.0

applets, 2-11
concerns when developing applets, B-3

Web server, configuring UNIX-based for applet
deployment, 5-35

Web site, testing files for, 5-4
wildcards in searches, 4-73–74
Win32

AWT application, 3-27
Console application, 3-27
Dynamic Link Library, 3-27

windows,
docking, 3-21–22
panels, 7-5

wizards, introduction to, 2-4
Workbook tabs, displaying, 3-23
workspace, 2-8, 3-18–25

debug, 6-3–10
deleting, 3-24
dockable windows in, 3-19

floating toolbar in, 3-24–25
MDI, 3-19–23
modifying, 3-23–25
organizing windows in, 3-22–23
renaming, 3-24
switching to different, 3-23

Z
ZIP file 5-31–38

deploying to with Archiver tool, 5-36–38
z-order, 8-7, 8-21
 Index-11

	Visual Cafe User’s Guide
	The Essentials
	Welcome to Visual Cafe
	Visual Cafe features
	What’s new in Visual Cafe version 3.0
	New or improved features in all editions
	JDK 1.1.7a and 1.2 support
	Improved Just-in-Time compiler (JIT)
	Swing support
	The Swing Menu Designer
	Improved interaction features
	Javadoc support
	Rapid JavaBeans development
	Improved AutoJAR tool and JAR Viewer
	One-step deployment
	Code Helper
	Syntax Checker
	Improved GridBagLayout support
	New Java macro system

	New features in the Professional and Database Editions
	Localization tool
	Version control integration
	Servlet support
	Improved customizable user interface

	New features in the Database edition

	Version compatibility
	Menu rearrangement
	Updating Visual Cafe

	Visual Cafe documentation
	Visual Cafe Getting Started
	Visual Cafe Sourcebook
	Online Help
	ReadMe file
	User’s Guide
	Portable Document Format

	How much programming do I need to know?
	Conventions used in this manual
	What’s next?

	Developing in Visual Cafe
	The Visual Cafe environment
	Windows
	Toolbars
	Editors
	Wizards
	How Visual Cafe keeps work synchronized
	Understanding Visual Cafe components
	AWT Components
	Swing components
	JavaBeans components

	Forms hold your Java program together
	Projects keep your work together
	Using workspaces to customize your work environment

	About applets, applications, servlets, and libraries
	Applets
	Browser versions needed to run Visual Cafe 3.0 applets
	Advantages of applets
	Limitations of applets

	Applications
	Libraries
	Servlets

	Debugging with Visual Cafe
	Compiler choices
	Symantec’s Just-in-Time compiler
	Sun Microsystems’ Javac Compiler and JDK

	Overview of creating a Java program
	Overview of creating an applet
	Overview of creating an application

	Working with Projects
	About projects
	About the Project window
	About the Project window’s views
	The Objects view
	The Files view
	The Packages view

	Changing the Project window’s tab display
	Dragging and dropping into the Project window
	Opening editors from the Project window

	About the contents of a project
	Source files
	Additional projects
	Documentation files

	Organizing files and folders
	About the system path
	About the project path

	About multiple projects and subprojects
	About multiple projects
	Viewing active projects

	About subprojects
	Using subprojects

	About workspaces
	About dockable windows in a workspace

	Using workspaces
	Working with the MDI window system
	Modifying workspaces
	Controlling toolbar position and visibility

	About project templates
	Using project templates
	Setting a new default template
	Creating a project template
	Deleting a project template
	Creating a servlet
	Specifying execution settings for a servlet

	Working with projects
	Creating a new project
	Opening an existing project
	Using older projects and files
	Migrating a project from earlier versions of Visual Cafe
	Migrating Java source files from JDK 1.0 to JDK 1.1

	Saving a project
	Renaming a project
	Copying a project
	Deleting a project
	Opening items in a project
	Closing a project

	About files in a project
	Using files in a project
	Adding a new file to a project
	Adding an existing file to a project
	Deleting a file from a project
	Copying a file in a project
	Sharing files among projects

	Working with components in a project
	Viewing the components and HTML files in a project
	Adding a component to a project

	About HTML files in Visual Cafe
	How HTML and Java work together: the applet tag
	Adding an applet to an HTML page

	Using HTML files
	Viewing and editing HTML files
	Passing parameters to applets from an HTML file

	Customizing a project
	About project options
	Setting project options
	Setting the program type
	Specifying class-file search paths for a project
	Specifying source-file search paths for a project

	Customizing the Visual Cafe environment
	About environment options
	Setting environment options
	Defining the Visual Cafe startup mode
	Setting the scope of the Undo command
	Defining the Help file set
	Specifying source-file search paths for Visual Cafe
	Inheriting the class path from the Windows environment
	Setting the class path for a Web browser
	Setting environment variables in the sc.ini file
	Mapping Visual Cafe commands to key sequences
	Customizing the display font and color
	Setting backup and save options

	Working with Source Code
	About classes, members, and the Class Browser
	About the Classes pane
	About the Members pane
	About the Source pane

	Working with classes
	Configuring the Class Browser
	Configuring the Class Browser and Hierarchy Editor

	Opening a Class Browser window
	Using the Classes pane
	Using the Members pane
	Using the Source pane
	Using the Insert Class Wizard
	Adding a class
	Editing a class
	Copying or moving a class
	Renaming a class
	Viewing and editing the source code for a class
	Deleting a class
	Finding a class or class definition

	Working with members
	Finding a member
	Adding a member
	Copying or moving a member
	Deleting a member
	Renaming a member
	Viewing a member’s source code
	Viewing a member’s attributes

	About the Hierarchy Editor
	Using the Hierarchy Editor
	Viewing imports
	Locating a class in the Hierarchy Editor
	Changing a class inheritance
	Changing class attributes

	About the Source window
	Using the Source window
	Editing a source file
	Showing horizontal scroll bars
	Typing in the Source window
	Toggling typing modes
	Controlling the cursor style
	Getting help on a Java keyword or method
	Changing code spacing and text capitalization

	Enabling and disabling RAD and automatic code generation
	Printing a source code file
	Adding custom code to a source file
	Guidelines and warnings

	Using the Code Helper
	Using the Syntax Checker
	Correcting syntax errors
	Setting text formatting for a single file
	Setting text formatting for the Visual Cafe environment
	Setting format options for files with a certain extension
	Modifying extension file types for formatting
	Specifying custom keyword formatting

	About Javadoc
	About Javadoc output

	Using Javadoc
	Using the Javadoc Editor
	Using the Javadoc Viewer
	Specifying Javadoc folders
	Setting Javadoc options

	Searching one or more files
	Using wildcards in searches
	Searching and replacing
	Comparing two files
	Specifying the search file type and location
	Setting advanced search criteria

	Jumping to a specific location
	Searching for a matching delimiter

	Working with imported Java code
	Importing source code
	Importing Visual J++ 1.1 projects
	Considerations when importing Visual J++ projects
	Importing a Visual J++ project by way of the .dsw or .dsp file

	Compiling and Deploying Your Project
	Compiling your Java program
	Running a project
	Making applets run in the AppletViewer or a browser
	Specifying an applet’s HTML file

	Configuring an application to run in Visual Cafe
	About the main class in bytecode and native applications
	Specifying the main class to run for an application
	Specifying arguments for application execution

	Compiling from the SJ command line
	Javadoc-related switches
	Native Win32 switches
	Environment variables
	How SJ searches for programs
	How SJ searches for imports in SC.INI

	Viewing compiler messages
	Compiler errors
	Using Visual Cafe to locate compiler errors

	Specifying whether builds are debug or final
	Specifying whether to parse imports
	Specifying whether to clear messages before a build
	Specifying the output folder for a project
	Using different Java virtual machines in Visual Cafe
	Setting internal VM environment options

	Deploying your project
	Deploying your applet
	Deploying your application
	Configuring UNIX-based Web servers
	Deploying from the command line
	Setting command-line archiving options

	Setting deployment options
	Setting deployment options for a project
	Setting the archive type, signer tool, and protocol
	Specifying what files to include in your archive or directory
	How Visual Cafe figures out what files your program needs
	Setting archiver options for JAR files
	Setting archiver options for CAB files
	Setting advanced deployment options for a project

	Setting deployment options for all projects

	About JAR files
	About deployment and JAR files

	Using JAR files
	Adding external files to a JAR
	Expanding a JAR file
	Viewing a JAR file

	Setting compiler options
	Specifying Java optimizations
	Generating debug information
	Specifying the Sun Java compiler
	Showing compiler warning messages
	Showing progress messages
	Showing dependencies
	Showing all Java messages
	Specifying Make settings
	Specifying custom compiler flags

	Debugging Your Program
	About the Visual Cafe debugger
	About the debug workspace
	About the Breakpoints window
	About the Call Stack window
	About the Messages window
	About the Threads window
	About the Variables window
	About the Watch window
	About the Source window
	About the Debug toolbar
	Keyboard shortcuts

	Using the debugger
	Starting a debugging session
	Switching to the Debug workspace when running in the debugger

	Ending a debugging session
	Restarting a debugging session

	Pausing a program to debug it
	Resuming a program

	Working with debugger messages
	Using Messages window shortcut keys

	Working with breakpoints
	Managing breakpoints
	Setting a breakpoint
	Setting a breakpoint on a line number
	Setting a conditional breakpoint
	Modifying a conditional breakpoint

	Setting a breakpoint at a method
	Enabling or disabling a breakpoint
	Turning breakpoints on and off in the Breakpoints window
	Turning breakpoints on and off in the Source window

	Clearing a breakpoint
	Ignoring all breakpoints
	Running to the end of the program
	Running to the cursor location

	Viewing the source code for a breakpoint
	Stepping through code
	Stepping into a method
	Stepping over a method
	Stepping out of a method

	Viewing and modifying variables, expressions, and methods
	Using the Variables window
	Viewing the value of a variable
	Viewing type information for a variable
	Modifying a variable in the Variables window

	Enabling or disabling ValueTips at debug time
	Using the Watch window
	Adding a variable or expression to watch
	Modifying a variable or expression in the Watch window
	Deleting a variable or expression from the Watch window

	Using the Call Stack window
	Viewing parameters for a method on the call stack
	Viewing variables for a method on the call stack
	Viewing source code for a method on the call stack

	Debugging threads
	Using the Threads window
	Debugging a single thread
	Suspending a thread
	Resuming a suspended thread
	Suspending other threads
	Resuming other suspended threads
	Viewing the source code for a selected thread
	Viewing the active variables in a thread
	Viewing the call stack for a thread

	Handling exceptions
	Throwing exceptions
	Catching exceptions
	Setting exceptions

	Using incremental, browser, and remote debugging
	Using incremental debugging
	Debugging applets in a Web browser
	Considerations for browser debugging

	Debugging programs on a remote computer
	Setting up for remote debugging
	Starting remote debugging
	Ending remote debugging

	Using Components
	Working with Components
	About the Java AWT
	About components
	About top-level components
	About containers
	About lightweight and heavyweight components

	About the Component Library
	Using the Component Library
	Adding components to the Component Library
	Creating a component template

	Adding custom components
	Adding a group to the Component Library
	Moving components within the Component Library
	Deleting components from the Component Library

	About the Component Palette
	Component Palette display options
	Customizing the Component Palette
	Adding a component or group to the Component Palette
	Moving components on tabs
	Deleting a component or group
	Renaming tabs

	About forms
	About the Form Designer
	Dragging and dropping into the Form Designer
	Form Designer shortcuts
	Displaying graphics in the Form Designer
	Displaying non-visual components in the Form Designer
	Enabling and disabling borders around components
	Using virtual fonts

	Overview of designing a GUI
	Working with forms and components
	Accessing the Form Designer
	Adding a form to a project
	Adding components to a form
	Copying components
	Deleting components
	Renaming a component
	Overlapping components in applets
	Tabbing between fields on a form
	Adding a dialog box to a form

	Working with component properties
	About the Property List
	Modifying component properties

	Arranging components
	Manipulating the Form Designer grid
	Choosing a layout manager
	Arranging components without a layout manager
	Arranging components in BorderLayout
	Arranging components in CardLayout
	Programming the flipping of cards in CardLayout

	Arranging components in FlowLayout
	Arranging components in GridLayout
	Arranging components in GridBagLayout

	Creating AWT-based menus
	Overview of the menu-design process
	Adding a menu bar to an AWT-based frame or dialog box
	Adding menus to an AWT-based menu bar
	Adding menu items to AWT-based menus
	Adding submenus to menu items
	Editing a menu structure
	Editing menu bars and menus
	Associating command keys and menu items
	Binding code to a menu item

	Working with JFC/Swing Components
	About Swing
	Inside Swing components
	The structure of a Swing UI
	About JComponent features
	Mixing Swing and AWT components
	About Swing windows and applets
	Customizing Swing components

	Creating a Swing-based project
	Overview of creating a Swing-based project
	Choosing a look and feel
	Changing the look and feel of Swing components
	Finding out which look-and-feels are installed

	Specifying tool tips for Swing components
	Specifying a border for a Swing component
	Choosing a layout manager for a container
	Specifying an icon for a Swing component
	Specifying a model for a Swing component
	Determining component z-order (display order)
	Controlling the display of expert and read-only properties
	Working with Swing menus
	About the Swing Menu Designer
	About the Accelerator Editor
	About mnemonics

	Using Action components in menus and toolbars
	Using non-Swing components in a Swing project
	Mixing lightweight and heavyweight components

	Working with Events and Interactions
	About events and interactions
	About interactions in Visual Cafe
	Overview of creating interactions

	Working with interactions
	Starting an interaction
	Starting an interaction with the Interaction Tool
	Starting an interaction with the Interaction Wizard

	Creating an interaction with the Interaction Wizard
	Editing an existing interaction
	Deleting an interaction
	Choosing which interactions are shown

	About interaction source code
	About the Java 1.1 event delegation model
	About the Java 1.0 event inheritance model

	Working with event handlers
	Adding an event handler to a component
	Editing an event handler
	Deleting an event handler
	An example of event handler source code

	Working with JavaBeans Components
	About JavaBeans and Java
	JavaBeans terminology
	Basic Bean structure
	Support of features in the JavaBeans specification

	About JavaBeans services
	Property management
	Accessor and manipulator methods
	Indexed properties
	Bound and constrained properties

	Introspection
	Reflection and design patterns
	Explicit Bean information
	The Introspector

	Event handling
	Unicast and multicast event sources
	Event adapters

	Persistence
	Bean storage

	Application builder support
	Property editors and property sheets
	Customizers

	About building Beans
	Bean design fundamentals
	What does the Bean do?
	How is the Bean used?
	What kind of properties, methods, and events does your Bean need?

	Creating a Bean
	Overview of creating a Bean
	Using the JavaBean Wizard
	Testing your Bean
	Updating Beans that are local to your project
	Automatically updating Beans in the Component Library
	Packaging your Bean for distribution
	Adding an existing Bean to the Component Library
	Deleting Beans from the Component Library
	Converting component description files to Beans

	Viewing and changing Bean properties
	Using the Property List to modify Bean properties
	Using a customizer to configure a component on a form
	Adding Visual Cafe information to a Bean
	Visual Cafe BeanDescriptor attributes
	ActionDescriptor
	Code samples

	Professional Features
	Creating Native Win32 Java Applications
	About native Win32 applications
	Native libraries and DLLs included with Visual Cafe

	Creating native executables and DLLs
	Considerations when creating native Win32 Java applications
	Linking native Win32 applications
	The main class in bytecode and native applications
	Deploying native Win32 applications, DLLs and libraries
	Debugging native programs

	Setting project options for native programs
	Specifying the name of a native application or DLL
	Specifying the working directories for a native program
	Specifying a program for running and debugging a DLL
	Specifying a class or package to be exported
	Specifying advanced Win32 compiler options
	Including library files to link into your native program
	Making a library file available to a project
	Specifying library file search paths

	Using native command-line tools
	Registering DLLs using SNJREG
	Using OPTLINK and SMAKE with Java programs
	Displaying the contents of binary files using OPTDUMP
	Displaying the component version using Cafever
	Converting coff object files to omf using coff2omf

	Working with samples of native applications
	Example: Creating an executable file
	Example: Creating an executable that uses a DLL

	Using Version Control with Visual Cafe
	About version control
	Installing version control systems
	Enabling version control for a project
	Managing projects using the SCC interface

	Using version control
	Configuring version control
	Setting version control options
	Adding and removing files
	Checking files in and out
	Working with the Visual Cafe project file and version control

	About renaming files in conjunction with version control
	Getting the latest version of a file
	Refreshing file status
	Showing the version control history of files
	Showing the differences between files
	Showing version control properties for files
	Running your version control system
	Setting the default version control user name

	Localizing Your Java Programs
	About localization
	Using localization
	Localizing a project with the Localization tool
	Localizing individual strings with the Localization tool
	Localizing auto-generated code
	Adding or deleting a locale
	Adding information to the resource bundle for a locale
	Editing a resource bundle
	Converting between native and ASCII characters

	Appendixes
	Updating Visual Cafe with LiveUpdate
	About LiveUpdate
	Using LiveUpdate over the Internet
	Using LiveUpdate with your modem
	Configuring your modem

	Uninstalling LiveUpdate upgrades
	Using LUCLEAN.EXE

	Troubleshooting
	Programming concerns
	Limitations of the Java language
	Java and case sensitivity
	Hardware limitations

	Browser issues
	When do you have to write your own code?
	Disabling automatic code generation in Visual Cafe
	Disabling sections of automatically-generated code

	Repairing a corrupted Visual Cafe environment

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	Z

	Index

